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Abstract— This paper presents preliminary results towards
translating gait and control design for bipedal robots to de-
centralized control of exoskeletons, aimed at restoring mobility
to patients with lower limb paralysis. A mathematical hybrid
dynamical model of the human-exoskeleton system is developed
and a library of dynamically feasible periodic walking gaits
for different walking speeds is found through nonlinear con-
strained optimization. These walking gaits are stabilized using
a centralized (i.e., full state information) hybrid zero dynamics
based controller which is then decentralized (i.e., control actions
use partial state information) so as to be implementable on the
exoskeleton subsystem. A control architecture is then developed
so as to allow the user to actively control the exoskeleton speed
through his/her upper body posture. Numerical simulations
are carried out to compare the two controllers. It is found
that the proposed decentralized controller not only preserves
the periodic walking gaits, but also inherits the robustness to
perturbations present in the centralized controller. Moreover,
the proposed velocity regulation scheme is able to reach a steady
state and track desired walking speeds under both, centralized
and decentralized schemes.

I. INTRODUCTION

Exoskeletons for lower limbs are wearable robotic devices
that fit around the legs and pelvis of a user. These may serve
as either Human Performance-Augmenting devices [14], [26],
[33], [41], [44]– designed to help improve strength and
endurance of able-bodied persons, typically for military and
industrial applications or as orthotic devices [9], [13], [29],
[37] – to assist physically challenged persons. A comprehen-
sive review of the state-of-the-art lower limb exoskeletons
can be found in [12]. The focus of this work is to design
controllers for full lower limb exoskeletons to restore normal
ambulatory functions in patients with lower limb paralysis
and allow free motion without the use of crutches. These
include patients with spinal cord injuries who have lost
muscle function in the lower half of their body.

Research on full lower limb active exoskeletons for ortho-
sis dates back to as early as the 1960’s when exoskeletons
designed to restore mobility in paraplegics were being de-
veloped separately at the Mihailo Pupin Institute in Belgrade
[24], [38] and at the University of Wisconsin [21], [34].
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Regularly since then, medical interest in exoskeletons has
increased with the understanding of their potential to provide
autonomy to handicapped people and commercial products
have been used within rehabilitation centers for paraplegic
patients since at least 2011, with new products and new
treatments regularly approved by the US Food and Drug
Administration.

The first exoskeletons, nevertheless, have limitations: ei-
ther they do not provide autonomous walking, requiring
crutches for stability and direction [1], [3], or only allow
quasi-static gaits with velocities on the order of 3m/min
[4]. Overcoming these limitations means having exoskeletons
able to perform dynamic walking in controlled settings—
known environment, known user—without external assis-
tance, thereby providing greater autonomy to users. This
is for example what the startup Wandercraft is currently
developing [5], namely a 12 degree of actuation exoskeleton,
see 1. It is intended to allow for dynamic walking, at first in
medical center settings.

More recently, in an effort to provide a platform for the
development of such biomechatronic devices, ETH Zurich
conducted a one-of-a-kind race for people with disabilities
using powered assistive devices, which included wheelchairs,
arm and leg prosthesis and robotic exoskeletons [2]. The
powered exoskeleton race saw participation from eight teams
and participants were asked to complete as many tasks
as possible in a given time frame, which included sitting
down on and standing up from a chair, walking around
static obstacles (slalom course), walking over ramps and
navigating through doorways, walking across tilted tiles and

Fig. 1: Image of Exoskeleton from Wandercraft. Link names
with respective mass values are presented in Table I.



over discrete footholds (stepping stones).
The next generation of exoskeletons will be designed to

adapt to unknown environments and operate with minimal
initial information regarding the user. Mobility will then
move beyond walking, to include features such as standing,
sitting, climbing stairs, avoiding obstacles or getting back-
up from a fall. Open-loop control algorithms will not suffice
for this new generation of exoskeletons, which motivates the
search for new control algorithms. To reach the expected
level of performance, it seems natural to take inspiration from
control techniques developed for bipedal robots.

In the area of bipedal robots, tools are being developed
that allow very rapid design of model-based feedback con-
trollers, that respect torque limits, friction cone constraints,
joint speeds, and gait characteristics, such as foot height
clearance and walking speed, while allowing for uncertainty
in the model and the environment [15], [19], [23], [30],
[40]. The objective of this paper is to begin the process
of translating these recent advances from bipedal walking
robots to exoskeletons [35].

Control schemes from bipedal robotic locomotion, how-
ever, are typically centralized, meaning that there is a single
controller with complete knowledge of the system. In the
case of an exoskeleton and user, such complete knowledge
would mean the full state of the user and the exoskeleton,
as well a complete dynamical model of the human-device
system, an obviously impractical assumption. This requires
us to think about a decentralized control architecture, that
is, a control architecture [22] that requires a realistic amount
of information about, and shared between, the human and
exoskeleton subsystems so that robust walking can still
be realized. Importantly, results on translating centralized
robotic walking to decentralized prosthetic locomotion have
recently proved successful [18], [42], [43], pointing toward
the possibility of similar results in the context of exoskele-
tons.

Control of biomechatronic devices that augment humans,
such as prostheses and exoskeletons, for bipedal locomotion
share many of the challenges of bipedal robot locomotion,
such as, nonlinear and hybrid dynamics, high degree of
underactuation, and input constraints on actuators. Additional
challenges that are specific to these biomechatronic devices
include the ability to handle interaction forces between the
human and the robotic device, and being robust to uncertainty
in the human dynamical parameters, such as variation in mass
and inertia parameters among different subjects, or the user
moving his or her arms in an unplanned manner.

The particular control method studied here is based on
virtual holonomic constraints and hybrid zero dynamics.
Virtual holonomic constraints, or virtual constraints for short,
are relations between the joints or links of a device that are
induced by feedback control instead of a physical connec-
tion. The hybrid zero dynamics (HZD) are a reduced order
dynamical model of the system that is induced by the virtual
constraints. This control design method is selected because
of the large body of analytical and experimental work that
has been developed around it [15], [19], [23], [30], [40].

In this paper, we develop a nonlinear decentralized con-
troller for a lower extremity exoskeleton. The primary con-
tributions of this paper with respect to prior work are:

• Generation of natural walking gaits that are dynamically
feasible for the human-exoskeleton system that enforce
the unilateral ground contact as well as friction and
input torque constraints.

• Design of a control architecture allowing the human to
actively control and regulate the walking velocity of the
human-exoskeleton system using his torso.

• Design of a decentralized controller, with minimal shar-
ing of sensing information between the human and
exoskeleton subsystems, that not only preserves the
periodic orbit created by a centralized HZD controller,
but is also robust to perturbations.

• Numerical validation of the proposed controller on a
21 degrees-of-freedom (DOF) human-exoskeleton sys-
tem walking at speeds ranging between 0.13m/s and
0.34m/s, and being sufficiently robust to walk on ramps
of up to 5◦ slopes.

The remainder of the paper is organized as follows.
Section II presents a hybrid, nonlinear model of the human-
exoskeleton system. In Section III a centralized HZD-based
controller is presented. In Section IV a velocity regulation
scheme, that allows the human subject to control velocity
of the exoskeleton, is presented. Section V presents a de-
centralized version of the HZD controller for the human-
exoskeleton subsystems. Section VI presents results of nu-
merical simulations and compares the two controllers. Fi-
nally, Section VII provides concluding remarks.

II. HYBRID MODEL OF WALKING

Having presented the state-of-the-art in lower limb ex-
oskeletons and introduced the challenges in control design of
these devices, in this section, we develop a hybrid dynamical
model of the human exoskeleton system. Particularly, we
model the various links of the exoskeleton and the torso and
arms of the human as rigid links connected by revolute joints.

Remark 1. In our model, we assume that the human lower
body and the exoskeleton can be treated as a lumped system,
with no actuation from the human legs. This is a reasonable
assumption to make since the purpose of this paper is to
develop exoskeleton controllers for patients with complete
lower limb paralysis. Patients with paralysis, however, may
develop spasticity resulting in sudden and involuntary ac-
tions. The effect of forces from the human lower limbs will
be considered in a future publication.

Depending upon the nature of interaction with the en-
vironment, bipedal locomotion, such as walking and run-
ning, can be decomposed into several individual phases (or
domains). Each domain can be described by a continuous
phase followed by a discrete event, triggering the transition
to the next domain. In the following paragraphs, we develop
a hybrid model of 3D flat-footed walking with actuated
feet, characterized by a continuous swing phase and an
instantaneous double support phase.



Fig. 2: Kinematic tree for the modeled human-exoskeleton
system. The xz-plane will be called hereafter the sagittal
plane, yz the frontal plane and and xy the transverse plane.
The red dotted box outlines the human subsystem.

TABLE I: Exoskeleton Links with Masses.

Link Name Link Mass (kg)
Pelvis 7.84

Human subsystem Waist 26.94
Torso 13.35
Arm 3.5

Hip Link (frontal plane) 3.45
Hip Link (transverse plane) 0.75

Human-Exoskeleton Hip Link (sagittal plane) 14.68
system Knee Link 8.92

Ankle Link (sagittal plane) 1.33
Ankle Link (frontal plane) 0.96

Toe Link 0.63
Total Mass 116.5

A. Hybrid dynamical model

To construct the hybrid model of the system, we employ
techniques detailed under [20, Section 4]. Specifically, we
use floating base coordinates to represent the configuration
variables, Q, of the system, i.e. q = (p, ϕ, qb) ∈ Q =
R3 × SO(3)×Qb represents the generalized coordinates of
the system, where p ∈ R3 and ϕ ∈ SO(3) represent the
Cartesian position and orientation of the body-fixed frame
with respect to the inertial frame respectively and qb ∈ Qb ⊂
Rn represents the set of body coordinates (joint angles).

The Lagrangian of the system, L : TQ → R is given as
the difference between the total kinetic energy, T : TQ → R,
and the potential energy, V : Q → R, i.e. L(q, q̇) = T (q, q̇)−
V (q), where TQ represents the tangent space of Q.

1) Holonomic Constraints: Any physical contact with the
external environment is modeled as a holonomic constraint,
ηc : Q → R, a function of the configuration variables
alone. For each domain, the holonomic constraints are held

constant, i.e. ηc ≡ constant, and the associated kinematic
constraint is J(q)q̇ = 0. Here J(q) is the Jacobian of the
holonomic constraint, i.e. J(q) = ∂ηc/∂q.

2) Continuous dynamics: The continuous dynamics is
obtained by solving the Euler-Lagrange equations and can be
expressed in the form of the standard manipulator equations:

D(q)q̈ +H(q, q̇) = Bu+ JT (q)F, (1)

where D(q) is the inertia matrix, H(q, q̇) = C(q, q̇)q̇+G(q)
is the vector containing the sum of the Coriolis and gravity
term, B is the actuator distribution matrix, and F : TQ ×
U → Rnc is a vector of contact wrenches containing the
contact constraint forces and/or moments (see [28]), where
nc is the number of holonomic constraints, and u ∈ U , is the
control input. The contact wrenches, F , can be obtained by
solving the second derivative of the holonomic constraints,

J(q)q̈ + J̇(q, q̇)q̇ = 0, (2)

and (1) simultaneously. Substituting the closed form solution
of F into (1) yields the control affine, nonlinear continuous
dynamics, ẋ = f(x) + g(x)u, where x = (q, q̇) ∈ T Q,
represents the state of the system.

3) Domain of Admissibility: In order for the holonomic
constraints to be satisfied, a set of constraints must be
enforced on the contact forces [20], [25]. These conditions
are stated in the form of inequalities as

ν(q)F (q, q̇, u) ≥ 0, (3)

where ν(q) depends on the physical parameters of the system
(e.g. geometry of foot, friction coefficient with the ground).
An example of such a constraint is that the ground reaction
forces must lie within the friction cone.

A different type of constraint that determines the admissi-
ble configurations of the system are known as unilateral con-
straints and denoted by h(q) > 0. For example, constraints
like the non-stance foot must always be above the ground
during swing phase, fall under this category. The domain of
admissibility is then defined as the set of states and control
inputs where the holonomic and unilateral constraints are
satisfied [20], namely

D = {(q, q̇, u) ∈ TQ× U | A(q, q̇, u) ≥ 0}, (4)

where

A(q, q̇, u) =

[
ν(q)F (q, q̇, u)

h(q)

]
≥ 0. (5)

4) Guards: A switching surface or guard, is a proper
subset of the boundary of the domain of admissibility. Let
H(q, q̇, u) be the appropriate elements from the vector in
(5) corresponding to the edge condition. Then the guard is
defined as

S = {(q, q̇, u) ∈ TQ× U | H(q, q̇, u) = 0, Ḣ(q, q̇, u) < 0}.
(6)



5) Discrete Dynamics: Associated with the guard, S, is
an impact map, ∆ : S → Q, a smooth function that maps
pre-impact states, (q−, q̇−), to states post impact, (q+, q̇+).
Moreover, post-impact configurations remain the same since
the configuration of the system is invariant to impacts. The
post-impact configuration velocities, however, need to satisfy
the plastic impact [20],[

D(q) −JT (q)
J(q) 0

] [
q̇+

δF

]
=

[
D(q)q̇−

0

]
. (7)

The hybrid model of the overall system depicted in Fig. 2
is comprised of the continuous-time dynamics and the dis-
crete reset map,

Σ :

{
ẋ = f(x) + g(x)u, x /∈ S,

x+ = ∆(x−), x ∈ S.
(8)

The floating base model of the overall system has 21 DOF,
with six of those corresponding to the floating base. The
system has 15 degrees of actuation, with 12 actuators for
the exoskeleton and three for the human.

III. CENTRALIZED CONTROLLER FOR BIPEDAL
WALKING

Having developed the hybrid dynamical model of the
human-exoskeleton system, we next present a feedback con-
troller to achieve dynamic walking. In particular, this will
be a centralized controller that has been successfully imple-
mented on high DOF underactuated 3D bipedal robots [23],
[32], [36]. An identifying feature of the control method is
that the various links of the robot are coordinated by a
single phase variable that depends on the robot state only and
is independent of time. This method has been successfully
translated to lower limb prosthesis [17], [43].

A. Virtual Constraints

At the core of our controller approach is designing a set
of outputs, y(x), known as virtual constraints, such that the
zeroing of these outputs leads to the desired robot behavior.
In other words, virtual constraints are functions of the state
variables that define how the various links of the robot should
move. These virtual constraints are regulated via feedback
control rather than through mechanical linkages, and hence
the name virtual constraints.

These virtual constraints are formulated as the difference
between their actual values, ya, and desired values, yd,
yielding

y = ya − yd. (9)

For the particular case of 3D flat-footed walking, we chose
the outputs, ya, to be a combination of velocity regulating
terms, ya1 and position modulating terms, ya2 , i.e. ya =
[ya1 ; y

a
2 ] where yai is a relative degree i output, i ∈ {1, 2}.

We choose yd1 = vd ∈ R to be the corresponding desired
velocity and choose

yd2 = yd2(τ(q, β), α) (10)

as the desired relative degree two output described by a set
of parameters, α, and phase variable, τ , a monotonically

increasing function of the configuration variables, q, and
parameters, β = (β1, β2). Here, the phase variable is defined
as

τ(q, β) :=
δphip(q)− β2

β1 − β2
∈ [0, 1], (11)

where δphip is the horizontal hip position relative to the
stance foot position in the sagittal plane (see Fig. 2). Note
that τ is normalized to be within [0, 1]. The scaling vector
(β1, β2) is defined as

(β1, β2) := (δphip(q0), δphip(qf )), (12)

where q0 and qf define the configuration of the human-
exoskeleton system at the beginning and end of a step.

For the relative degree two virtual constraints, we use
Bézier polynomials to parametrize the desired evolution as
a function of the phase variable, τ ,

yd2(τ, α) :=

M∑
k=0

α[k]
M !

k!(M − k)!
τk(1− τ)M−k, (13)

where M is the order of the Bézier defined by M + 1
coefficients. The tuple

{
α, β, vd, x

O} then defines a gait.

Remark 2. For the human-exoskeleton system, the following
virtual constraints are defined in terms of actuated joints and
are hence in body coordinates: Stance Knee Pitch, Stance
Hip Roll, Stance Ankle Roll, Stance Hip Yaw, Stance Pelvis
Pitch, Stance Arm Pitch, Torso Pitch, Swing Arm Pitch,
Swing Knee Pitch, Swing Hip Roll and Swing Hip Pitch. The
following virtual constraints, on the other hand, are defined
in terms of world-frame orientation: Swing Foot Roll, Swing
Foot Pitch and Swing Foot Yaw. For the each of these 14
virtual constraints, the actuator torques show up in their
second derivatives and hence are said to be relative degree
two and are denoted as y2. The remaining virtual constraint
is defined as the horizontal velocity of the hip; the torques
show up in the first derivative of this virtual constraint; it
is therefore said to be relative degree one and is denoted
by y1. Note that we have defined 15 virtual constraints
corresponding to the 15 actuators in the human-exoskeleton
system.

B. Partial Hybrid Zero Dynamics and a Central Controller

Having established a hybrid dynamical model of walking
and presented a set of virtual constraints that needs to be
enforced, we use feedback techniques developed in [40] to
enforce these constraints. This creates a partial hybrid zero
dynamics surface (partial HZD) [7] embedded in the state
space. The developed controller is a centralized controller in
the sense that it requires full knowledge of the entire state
vector. More details on partial hybrid zero dynamics and the
centralized controller have been relegated to Appendix I.

C. Gait Generation via Direct Collocation Method

For the HZD method of control design, we need to
design the desired profile of the virtual constraints that when
enforced leads to a stable walking gait. This is done through
a nonlinear constrained optimization process using direct



Fig. 3: Feedback diagram illustrating the decentralized controller with velocity regulation. Block in yellow denotes
continuous-time, decentralized controller. Block in blue denotes the discrete-time event-based velocity regulation controller,
executed at the end of every walking step. Dashed lines denote variables sampled at the end of every step.

collocation [23]. Further details on the direct collocation
based optimization are presented in Appendix II, while
the constraints that are enforced by the optimization are
presented in Appendix III.

The result from the optimization is the set of parameters{
α, β, vd, x

O} which fully describes an individual gait,
where xO is the evolution of the states of the system along
the orbit O parametrized by τ , while α, β, vd are as defined
previously. The stability of the resulting gait can be inferred
as in [40, Thm. 5.3], or as we will do later, by directly
computing the Poincaré map.

IV. VELOCITY REGULATION

Having presented the continuous-time HZD controller and
the nonlinear constrained optimization to generate periodic
gaits, we now present a method to enable walking velocity
regulation based on the desired human velocity. In particular,
this section presents a convenient means for the user to
vary the walking speed of the exoskeleton, while maintaining
stability and satisfying torque, ZMP1 and friction constraints.
The key ideas are: (1) to design a discrete library of gaits
and controllers for stable walking at fixed speeds; (2) to
interpolate the gaits and controllers to create a continuum
of walking gaits and controllers [10]; and (3) for the user
to command speed increases or decreases through his or her
torso lean angle, similar to how one rides a Segway. Each
of these aspects of the speed regulation is addressed in the
following.

1The Zero Moment Point (ZMP) is a point in the contact region of the
stance foot and the ground where the sum of all moments of active forces
with respect to this point is equal to zero. The ZMP constraint enforces that
the ZMP is within, and not at the boundary of, the foot geometry.

A. Library of Gaits

To regulate the velocity of the exoskeleton, a method sim-
ilar to [10] is used. A finite library of gaits, L, is generated
through optimization for different desired walking speeds
vd. The step duration is restricted to around 0.8 (s) and
all physical constraints discussed in Sect. III are imposed.
Each gait in the library L is defined by the parameters{
α, β, vd, x

O}i
:=

{
α, β, vd, x

O} (vid), all of which were
defined in III-A. The gaits are ordered by increasing values
of vid. Gaits were generated for values of

{v1d, · · · , v7d} = {0.13, 0.15, 0.18, 0.20,
0.24, 0.29, 0.34} m/s. (14)

Gait parameters at an intermediate speed v are generated by
linearly interpolating the gait library. Specifically,

ζ =
v − vid

vi+1
d − vid

, vid ≤ v < vi+1
d , (15){

α, β, vd, x
O} (v) = (1− ζ) ∗

{
α, β, vd, x

O}i
(16)

+ ζ ∗
{
α, β, vd, x

O}i+1
,

where ζ ∈ [0, 1] is the interpolation factor and the parameters
for the interpolated gait are

{
α, β, vd, x

O} (v) with vd = v.

Remark 3. To be extra clear, in the above equations the pa-
rameters {α, β, vd, xO} vary continuously with the velocity
v.

This then creates a continuum of gaits, each of which is
locally exponentially stable and meets the design constraints
given in Sect. III, see [10] for reasons on why this is true. To
demonstrate this, we numerically compute the Poincare map
as described in [40] and tabulate the modulus of the dominant
eigenvalue of the linearized Poincare map in Table II for
different interpolated speeds. Since these values are strictly



Fig. 4: Snapshots of walking at a desired speed of 0.3m/s achieved by our proposed controller on the human-exoskeleton
system is shown. An animation video of the simulation is available at https://youtu.be/VXP7DKY6Trc.

TABLE II: Dominant Eigenvalues at different speeds.

Forward Velocity (m/s) Largest Eigenvalue

0.17 0.3023
0.19 0.2150
0.21 0.3606
0.23 0.3313
0.25 0.1891
0.27 0.1764

less than 1, the gaits are locally exponentially stable, see [40]
for more details.

B. Relaxing local stability of walking speed

The above gaits, being asymptotically stable, will reject
attempts by the user to change the walking speed through
body posture adjustments. We now prepare the controller
to more readily accept such posture changes as speed com-
mands from the user.

Let ya1 (x
−) be the longitudinal velocity of the exoskele-

ton’s hip at the end of the current step. When selecting a
gait for the next step, suppose that we set v in (15) and
(16) such that v = ya1 (x

−). Then, as explained in [10], two
things will happen. First of all, we are selecting a gait that
respects important physical constraints around the system’s
current walking speed. Secondly, the closed-loop system
becomes “neutrally stable” in the sense that all but one of
the eigenvalues of the Jacobian of the Poincaré map are
strictly within the unit circle, and the remaining eigenvalue
is approximately equal to one. In other words, when looking
at the system step to step, the longitudinal speed behaves
like an integrator because the controller’s setpoint at each
step is reset to the speed of previous step. Said another way,
if a “disturbance” or “user command” causes the system
to increase or decrease walking speed over the course of a
step, the new speed will be maintained during the next step.
The next subsection will show this to be a highly desirable
property for the closed-loop system as it makes it easy for
the user to regulate speed through torso pitch angle.

C. User Regulation of Walking Speed

With the exoskeleton being controlled to walk at a contin-
uum of velocities, but being neutrally stable in the sense
described above, a means is now provided for the user

to stabilize the walking speed to a desired value. This is
accomplished by having the human command speed changes
to the exoskeleton through changes in torso pitch angle.

The basic idea can be inferred from how a human regulates
the speed of a Segway: a forward lean of the body accelerates
the Segway, while a backward lean decelerates it. Here,
a change in the user’s torso pitch with respect to the
upright position will be interpreted as a desired increment (or
decrement) of the walking speed with respect to the current
walking speed. Speed increase or decrease over the course of
a step is a discrete-time or hybrid analogue to acceleration
or deceleration of a Segway. Both allow velocity regulation
to be accomplished with a proportional control actions that
humans master easily.

The speed regulation policy described above is imple-
mented through a simple modification of the outer-loop of
the exoskeleton controller. Specifically, at the end of each
step, the desired velocity is modified to take into account
the user’s torso angle,

v = ya1 (x
−) + δv (17)

δv := Kv ∗ (qaT − 0), (18)

where v is the velocity used to select a gait as seen in (15)
and (16), Kv is a proportional gain, and qaT is the user’s torso
pitch angle at the end of the previous step.

D. Simple Model of User Control Actions

For the purpose of simulating a user walking in the
exoskeleton, we need to model how the user will modify
their torso pitch angle step-to-step when signaling desired
speed changes to the exoskeleton. The simple proportional
controller

qdT := Kt ∗ (vH,d − ya1 (x
−)) (19)

is assumed, where qdT is the desired torso angle to be
achieved at the end of the next step, Kv is a proportional
gain, vH,d is the velocity desired by the human.

The proportional controller could be replaced with a more
advanced policy, such as one having integral and derivative
terms to better reflect a more highly trained user, though this
is not done here. We choose instead to focus on smooth tran-
sitions in the desired speeds. The following assumptions are
made on how the human moves the torso. These properties
could be achieved through training, or modifications could

https://youtu.be/VXP7DKY6Trc


be added to the exoskeleton controller to achieve the same
objectives:

• The path of the torso can be captured by Bézier poly-
nomial that starts at the current torso angle and ends at
the desired angle, with a starting and ending slope of
zero.

• To avoid large jumps in velocity, qdT and δv are satu-
rated. The gains and saturations used in this exoskeleton
are as follows:

−0.06m/s ≤ δv ≤ 0.06m/s

−5◦ ≤ qdT ≤ 5◦

Kt = 0.5 rad s/m

Kv = 0.7m/(s rad).

Remark 4. It was found that KtKv ≤ 0.5 results in good
velocity regulation with periodic motion in steady state.
Lower values result in slower tracking of the desired velocity.
Note that the expression KtKv arises when we substitute
(19) into (18) with qaT ≈ qdT .

V. DECENTRALIZED CONTROLLER

Having presented HZD-based control design for bipedal
walking and a means for the human user to control the
velocity of the exoskeleton, we now introduce a decentralized
control architecture for the human-exoskeleton system. The
need for decentralization is motivated by the fact that it
is often difficult or impractical to obtain precise state in-
formation of the human, which involves attaching sensors
to various links and joints of the human pilot. Also, it is
possible that the human pilot may not know what the true
state of the exoskeleton system is. This motivates us to
develop a decentralized controller that minimizes the sensing
information that is shared between the human subject and
the exoskeleton. Towards this, we first present assumptions
we make about the information available to the human and
the exoskeleton controllers, followed by the decentralized
controller. An overview of the decentralized control design
with the velocity regulation approach is presented in Fig. 3.
Note that the two control inputs (uH , uE) from the decentral-
ized controller are only needed for simulations in which the
human behavior is being represented through simulation. In
practice only uE is implemented on the exoskeleton system
with the real human taking over for uH .

A. Control Design Assumptions

1) State Decomposition: The state of the human-
exoskeleton system, x, can be decomposed into states
of the human, exoskeleton and global variables,

x = [xH ;xE ;xG],

where, xH ∈ Rh represents the states corresponding to
the human configuration variables and are available to
the human alone. In the human model, these correspond
to the human torso and arm joints. Similarly, xE ∈ Re

represents the states corresponding to the configuration
variables of the exoskeleton and are available to the

TABLE III: List of variables pertaining to the controller
design, velocity regulation, and decentralized controller

Variable Description

y, y1, y2, ya, yd y are the set of virtual constraints imposed
by the controller, where y = ya − yd. ya
is the actual values of a set of outputs from
the system while yd is the desired values for
the outputs. y1 and y2 define relative degree
one and two virtual constraints respectively.

α, β, τ α is a set of Bèzièr polynomial coefficients
used to define yd2 . The polynomials are
parametrized by the phase variable τ ∈
[0, 1] where τ is a function of the state of
the system. β is a set of parameters used
to compute τ . During a step τ should be
monotonically increasing.

xO The evolution of the states of the system
along a periodic orbit O as a function of τ .

L Ordered set of gait primitives in increasing
order of desired hip velocity yd1{

α, β, vd, x
O}next Set of gait parameters for the next step.

ya1 (x
−) The actual linearized hip velocity at the end

of the previous step

vH,d The desired speed the human
¯

wants to
achieve

qdT The desired torso angle, chosen by the hu-
man, to be achieved by the end of the next
step

qaT The actual relative torso pitch angle at the
end of the previous step

δv Change in the desired hip velocity of a
gait (away the periodic gait). Used by the
exoskeleton to speed up or slow down

Kt A coefficient denoting the relation between
qdT , vH,d, and ya1 (x

−).

Kv Coefficient denoting the relation between δv
and qaT .

xG States corresponding to the global position
and orientation (i.e. position and orientation
relative to an inertial frame.)

xH States corresponding to Human subsystem
(torso pitch angle and arm joint angles).

xE States corresponding to Exoskeleton subsys-
tem

xH States corresponding to Human subsystem
(torso pitch angle and arm joint angles) on
the periodic orbit, O, parametrized with the
phase variable τ .

xE States corresponding to Exoskeleton subsys-
tem (torso pitch angle and arm joint angles)
on the periodic orbit, O, parametrized with
the phase variable τ .



exoskeleton controller alone. The global state variables,
xG ∈ Rg are available to both, the human as well as
the exoskeleton controller. These pertain to the position
and orientation of the system with respect to an iner-
tial frame of reference. Here h, e and g are positive
constants such that, h+ e+ g = n.

2) Existence of Periodic Orbit: There exists an
asymptotically stable periodic orbit, O, for the
closed-loop system, Σ in (8), with the input-output
linearizing controller, uIO.

3) Partial State Information: With the exception of the
assumptions 5a and 5b, it is assumed that the human
subsystem has knowledge only about the human and
global states, xH , xG, and assumes the corresponding
exoskeleton states are always on the periodic orbit, O.
Similarly, the exoskeleton subsystem has information
only about the exoskeleton and global states, xE , xG,
and assumes that the states corresponding to the human
are always on the periodic orbit, O. Therefore, the
variables available to the human controller, xH , and the
exoskeleton controller, xE are given by,

xH = [xH ;xO
E ;xG],

xE = [xO
H ;xE ;xG],

where, xO
E ∈ Re and xO

H ∈ Rh represent the states
corresponding to the exoskeleton and human joints on
the periodic orbit, respectively.
It should be noted that xO

H is simply the human hav-
ing an upright stance relative to the exoskeleton with
downright arms, since the exoskeleton is unaware of
the motion of the human torso in the middle of a step.
Remark 5. The human would be controlling their torso
angle to adjust their speed. In addition, the human is
expected to use their arms and not hold it statically.
This implies that the true human state xH ̸= xO

H . Still,
it is believed that a sufficiently robust controller on the
exoskeleton would keep the system stable, despite not
having the light human upper body on their periodic
orbit. In addition, with the exoskeleton accelerating or
decelerating, the exoskeleton won’t always be on its
periodic orbit either. With that, it is assumed that the
human would be able to track their desired torso pitch
angles regardless of the state of the exoskeleton. Section
VI will show how the system behaves under small steady
state errors in the torso tracking.

4) Phase Variable: The phase variable, τ is available to
the exoskeleton controller. If one models the human’s
controller for posture and arm regulation as being
synchronized with the gait, then one may assume that
τ is also available to the human. Here, we use τ to
generate a feedforward term for regulating the posture
of the upper body (torso and arms).

5) Velocity Regulation:
a) In between steps, for purposes of computing qdT ,

the human has access to ya1 (x
−), the linearized hip

velocity at the end of the previous step before impact.
b) In between steps, for purposes of computing δv, the

exoskeleton has access to qaT , the relative torso angle
at the end of the previous step.

6) System Model: The human and the exoskeleton con-
troller have knowledge about the actual model of the
system.

B. Decentralized Control Design

Note that, throughout this section, the indexing variable,
i ∈ {H,E} corresponds to the human or exoskeleton and
the indexing variable, k ∈ {1, 2} denotes relative degree one
or relative degree two.

We begin by obtaining the desired outputs, vd and
yd2(τ, α), representing a walking gait through constrained
nonlinear optimization using direct collocation methods, de-
tailed in Section III-C, for the complete human-exoskeleton
system.

The control equations we develop next closely follow that
introduced in Section III, with states xi and outputs yi. In
particular, we compute the vector fields, f(xi) and g(xi),
outputs, yi = [y1,i; y2,i], and the Lie derivatives, Lk

fyk,i
and LgL

k−1
f yk,i corresponding to the human states, xH , and

exoskeleton states, xE where,

yi =

y1,i
y2,i

 :=

 ya1 (xi)− vd

ya2 (xi)− yd2(τ, α)

 .

Note that, to better use the available measurements of τ, τ̇
as per Assumption 4 in Sec. V-A, the decentralized controller
computes the Lie derivatives as follows:

Lfyk,i(τ, τ̇ , xi) = Lfy
a
k(xi)−

∂ydk
∂τ

(τ, α)τ̇ ,

= Lfy
a
k(xi)− ẏdk(τ, τ̇ , α),

L2
fy2,i(τ, τ̇ , xi) = L2

fy
a
2 (xi)−

∂ẏd2(τ, τ̇ , α)

∂τ
τ̇ −

∂ẏd2(τ, τ̇ , α)

∂τ̇
Lf τ̇(xi),

LgLfy2,i(τ, τ̇ , xi) = LgLfy
a
2 (xi)−

∂ẏd2(τ, τ̇ , α)

∂τ̇
Lg τ̇(xi).

Two separate control inputs, for the human (uH ) and for
the exoskeleton (uE), are computed as follows,

uIO,i = A−1
i

Lfy1,i(xi)

L2
fy2,i(xi)

+

µ1,i

µ2,i


ui = Ti · uIO,i.

Here, Ti : Rm → Rni , is a constant matrix that selects
the control input corresponding to the human or exoskeleton
joints from the full dimensional input, uIO,i, where ni is the
number of actuators corresponding the human or exoskeleton
and nH + nE = m. Ai = [Lgy1,i(xi);LgLfy2,i(xi)] is



the decoupling matrix corresponding to the human or the
exoskeleton controller and µi is a linear feedback controller,

µi =

µ1,i

µ2,i

 :=

 −k̄pi y1,i

−2kpi y2,i − kdi ẏ2,i

 , (20)

for kpi , k̄
p
i , k

d
i diagonal matrices with positive entries. The

control input for the full state is then given by the augmented
control input, u = [uH ;uE ].

In the decentralized control design presented above, it
can be noticed that the exoskeleton controller does not have
information about the true states of the human and vice versa.
This is important since, in a practical setting, it may not be
feasible to obtain measurements of human states. However, it
is unclear if this controller will result in a stable system since
we do not use full state information. Thus, Section VI covers
numerical analysis using Poincaré maps to test stability and
simulations to test robustness.

It is worth noting that the feedback linearizing control
model for the human is not the only controller that can be
applied to the human subsystem. In addition, other control
designs have been tested, such as using joint level PD con-
trollers on the human subsystem, which resulted in similar
results. A feedback linearizing design has been chosen for
the human subsystem to maintain consistency and similarity
between the centralized controller and decentralized con-
troller approaches. Further, it is assumed that the exoskeleton
controller is robust enough that it would remain stable and
capable of regulating velocity so long as the human is
capable of maintaining a sufficiently decent tracking of their
desired torso angle by the end of each step. Section VI will
show results of the system being stable despite some steady
state error in the human’s torso tracking.

VI. RESULTS AND DISCUSSION

Numerical simulations are performed to investigate and
compare the performance of the stabilizing controllers devel-
oped in the paper. In particular, the centralized and decentral-
ized implementations of a controller for a fixed gait are first
compared. The controllers are evaluated for their response to
an initial condition that is not on the designed periodic orbit
and for changes in the arm profiles adopted by the user. The
point of the latter is that the user should not be constrained
in how she moves her arms, while the optimization assumed
the arms remain down and parallel to the body. Next,
the centralized and decentralized implementations of speed
regulation are compared over a varying speed profile. Finally,
to test robustness of the proposed controller, the exoskeleton
is simulated when walking up a ramp of a constant 5◦ slope.
In all simulations, identical gains were used in the centralized
and decentralized implementations of the controllers, and the
same applies for walking on a flat surface versus a sloped
surface.

A. Centralized vs Decentralized Implementations with a
Fixed Gait

In this first simulation, the user is not allowed to adjust the
speed setpoint of the closed-loop system. The controller is

operated with a fixed gait corresponding to vd = 0.15m/s,
which is held constant step to step; moreover the user is
assumed to maintain an erect torso, with the arms held fixed
in the downward position. The purpose is to compare the
centralized controller, that comes from the bipedal robotics
literature, to its decentralized implementation, that respects
the amount of shared information that can reasonably be ex-
pected between the user and the exoskeleton. The controllers
are implemented as in Sect. V, with qdT = 0◦ and the output
of the velocity library held constant.

To check the controllers’ responses to off-orbit conditions,
the initial condition of the exoskeleton is selected to be
that of the periodic orbit of the gait for vd = 0.24m/s.
Figures 5e and 5f shows both controllers driving the outputs
nearly to zero before the end of each step. In addition,
one can observe from the phase portraits in Fig. 5c and
5d that the periodic orbits of the closed-loop systems are
indeed the same. In addition, it can be seen that both the
centralized and decentralized controllers lead to a stable
solution / behavior. We conjecture that their high similarity is
because the perturbations are in the states of the exoskeleton.
In addition, we conjecture that the upright posture of the user
minimizes the effect of the user on the exoskeleton states.

B. Centralized vs Decentralized Implementations Velocity
Regulation

In this next set of simulations, the user is allowed to adjust
the speed setpoint of the closed-loop system. The exoskeleton
is walking on flat ground. In the first evaluation, the user’s
arms are controlled to a downward position, corresponding to
the assumption of the gait design, and in the next simulation,
they are swinging.

Figures 6a and 6b show both controllers responding to step
changes in desired speed. The centralized and decentralized
controllers each converge to a periodic steady state; phase
portraits are shown in Fig. 6c and 6d. The steady-state speeds
of the two controllers indicate that interpolated gaits are
being employed. Figures 6e and 6f show that a key constraint,
the ZMP, is being satisfied by the interpolated centralized
and decentralized controllers. The other constraints, such as
friction cone and torque bounds are also respected, though
they are not shown here.

It is noted in Fig. 6a that the centralized controller achieves
zero steady-state tracking error in the hip velocity, whereas
in Fig. 6b, the decentralized controller sometimes has a
non-zero steady-state error. A non-zero tracking error in
the velocity occurs when the user’s torso has a steady-state
orientation error. In the highlighted section, the speed error of
0.028m/s corresponds to a torso error of 0.36◦. The steady-
state error is of no practical importance because it could be
removed by augmenting the simple proportional controller
proposed in (19) with an integral term, something the user
would do through “intuition”.

C. Effects of Arm Motion

Next, with the exoskeleton walking on level ground with
the decentralized controller, the effects of the arms swinging
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Fig. 5: Comparison between the Centralized and Decentralized controller in handling a perturbation in the initial conditions
of the exoskeleton states; recall that the user has an upright posture. Both controllers are implementing the same periodic
orbit. Figures a and b show the velocity tracking. Figures c and d show phase portraits converging to periodic orbits. Figures
e and f show output errors converging to zero.

±7.5◦ are evaluated; to be clear, the arm positions are
unknown to the exoskeleton. The resulting velocity profiles
are shown in Fig. 7a and 7b, where a period-2 oscillation
is observed when the arms are swinging in Fig 7b. The
amount of perturbation seems unlikely to be significant to a
user. Though not shown, the action of the arms’ motion has
increased the steady-state error in the user’s torso position.
This does increase the steady-state error in the velocity. An
experienced user would remove the torso error and cancel
the velocity error as well.

D. Walking up a Ramp
Now, with the arms fixed downward and using the decen-

tralized controller, the closed-loop system is challenged with
a ramp of 5◦ incline2. The same library of gaits optimized
for flat terrain are used here. The only change made is that
it is assumed that the exoskeleton can sense ground slope
for the purpose of orienting the swing foot parallel to the
ground.

Figure 8b shows that the exoskeleton is indeed capable
of walking up the slope without modifying the controller. In

2According to the 2010 ADA Guideline, ramps are considered part of an
accessible route if their slope is no steeper than 1 : 12, with exceptions [6].
5◦ is very close to the 4.8◦ recommended by the guidelines.
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Fig. 6: Comparison between Centralized and Decentralized controllers in tracking desired velocities. Figures a and b show
the velocity tracking. Figures c and d torso tracking at the end of each step. Figures e and f show ZMP being within the
foot’s geometry.
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Fig. 7: Comparison of the effect of arm swinging on the decentralized controller. Figure a shows the case with the arms
stationary. Figure b shows the case with the arm swinging ±7.5◦. In both cases, the exoskeleton controller assumes that the
arms are stationary.
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Fig. 8: Simulation results of walking up a 5◦ slope. Figure a shows a snapshot of the simulation. Figure b shows the velocity
tracking of the closed-loop system.

addition, the achieved velocity is close to the desired value.
In addition, the simulation satisfies ZMP, friction cone, and
torque bound constraints. Walking up the slope has resulted
in the step duration increasing from approximately 0.8 s to
1.24 s.

VII. CONCLUSION

In this paper, we took recent tools from the design of
control systems for bipedal robots and began their translation
to an exoskeleton designed for patients with lower-limb
paralysis. Drawing on methods based on virtual constraints,
hybrid zero dynamics, and gait optimization, we developed
a nonlinear decentralized control scheme for a lower-limb
exoskeleton. In addition, a design for interfacing the human
and the exoskeleton for velocity control is proposed. The
overall controller is stabilizing, tracks the human’s desired
velocity, and is able to handle terrain variation, such as
an upward slope. An important feature of the decentralized
controller is that it does not require knowledge of the true
state of the human, other than the torso angle, which is used
to transmit desired velocity changes to the exoskeleton.

In future work, we intend to add additional degrees of
freedom to the human model and allow the user to carry
unmodeled loads, such as a backpack or a tablet in the user’s
hands. We will design a more complete set of gait primitives,
including standing, walking faster, walking backwards, turn-
ing and sitting. We will also seek additional robustness to
terrain variation using robust nonlinear controllers inspired
by [11], [19], [30], [31].

APPENDIX I
PARTIAL HYBRID ZERO DYNAMICS AND A CENTRAL

CONTROLLER

With the aim of driving the outputs exponentially to zero,
the control law,

uIO := A−1(

[
0

L2
fy2(q, q̇, α, β)

]
+

[
Lfy1(q, q̇)

kdLfy2(q, q̇, α, β)

]
+

[
k̄py1(q, q̇, vd)
2kpy2(q, α, β)

]
), (21)

where kp, k̄p, kd are diagonal matrices with positive entries
and the Decoupling Matrix A is given by

A =

[
Lgy1(q, q̇)

LgLfy2(q, q̇, α)

]
, (22)

input-output linearizes the system and yields the exponen-
tially stable linear output dynamics

ẏ1 = −k̄py1, (23)
ÿ2 = −2kpy2 − kdẏ2. (24)

Note that Lfy1, Lgy1, Lfy2, L
2
fy2, and LgLfy2 denote var-

ious Lie derivative of y1, y2 with respect to the vector fields
f, g.

The input-output feedback controller, uIO, renders the zero
dynamics manifold, given by

Z := {x ∈ TQ | y1 = 0, y2 = 0, Lfy2 = 0}, (25)

invariant in the continuous dynamics, i.e., any solution that
starts in Z remains in Z throughout the continuous phase.
However, since the impact generally involves a jump on the
velocity, the post impact velocity modulating output, y+1 ,
is non zero, and consequently the zero dynamics manifold,
Z , is not impact variant under the choice of these outputs.
Therefore, the hybrid invariance condition is enforced only
on the position modulating outputs, resulting in the Partial
Zero Dynamics Surface [7], defined as

PZ := {x ∈ TQ | y2 = 0, Lfy2 = 0}. (26)

The Partial Zero Dynamics Surface is said to be impact
invariant if the post impact states remain in PZ , i.e.

∆(x) ∈ PZ, ∀x ∈ S ∩ PZ. (27)

The Partial Zero Dynamics Surface is hybrid invariant
if it is invariant in the continuous dynamics and if it is
impact invariant. If there exists a control input, u, for the
system, Σ, such that PZ is hybrid invariant, then the system
is said to have a Partial Hybrid Zero Dynamics (PHZD)
surface. Moreover, by restricting the dynamics of the system
on the PHZD surface, the analysis of periodic orbits for
the full-order system can be done through those of the
lower dimensional PHZD. Further details can be found in
[8], [27]. For the considered model and choice of outputs,



these dynamics are of dimension 4 and described by the
coordinates (τ, y1, τ̇ , ẏ1). In the next section, we briefly
summarize a gait generation technique, presented in [7], for
determining the parameters α and vd that define the desired
outputs yd.

APPENDIX II
GAIT GENERATION VIA DIRECT COLLOCATION METHOD

When using the HZD method of control design, the spec-
ification of stable walking gaits can be posed as a nonlinear
constrained optimization problem. In other words, values
for the desired output parameters, α and vd, that satisfy
invariance, periodicity and asymptotic stability constraints,
can be determined while minimizing an objective function
J (z), such as the cost of transport. In this paper, we use a
direct collocation method to generate walking gaits for the
human-exoskeleton system. Here, we only present a brief
summary of the optimization problem and refer interested
readers to [23] for a more detailed description.

We begin by representing the discretization of time by

0 = t0 < t1 < t2 < · · · < tN = TI , (28)

where TI > 0 is the time at which the system reaches a guard
of the corresponding domain, N = 2(N c− 1), with N c ∈ Z
equal to the total number of even nodes, also called cardinal
nodes. A key feature of this method is the introduction of
defect variables. Determination of certain optimization vari-
ables in closed form may be computationally expensive in the
optimization due to the relatively complicated nature of these
functions. Defect variables avoid the explicit computation of
these variables by imposing implicit but equivalent equality
constraints. The vector

zi = (T i
I , q

i, q̇i, q̈i, ui, F i, αi, vid, β
i) (29)

is a set of optimization variables defined for each node,
i ∈ {0, 1, 2, ..., N}. The direct collocation optimization is
formulated as a nonlinear program (NLP),

z∗ = argmin
z

J (z) (30)

s.t. zmin ≤ z ≤ zmax, (31)
cmin ≤ c(z) ≤ cmax, (32)

where z = (η̄0, z0, z1, ..., zN , δFN ) is a vector of decision
variables, with η̄0 denoting the desired holonomic constraint
at the first node, c(z) is a vector of constraint functions,
organized in the order of nodes and described in the next sec-
tion, zmin and zmax are vectors containing the minimum and
maximum values of the optimization variables respectively,
and cmin and cmax are the vectors containing minimum
and maximum values of constraints respectively, which are
set to zero for equality constraints. Additionally, physical
constraints, such as actuator input bounds, joint angle and
velocity limits, can be incorporated as the boundary values
of the corresponding optimization variable in zmin and zmax.
The resulting direct collocation problem is solved by large
sparse NLP solvers such as IPOPT [39], SNOPT [16], etc.

APPENDIX III
CONSTRAINTS FOR OPTIMIZATION

The following constraints are enforced for the optimization
and determine the functions c(z) in (32):
(a) Defect Constraints: These are constraints on the esti-

mated states from the optimizer and states obtained from
the interpolation polynomial. A complete description of
defect constraints can be found in [23].

(b) System and linear output dynamics: The system dy-
namics, (1) and (2), and the closed-loop linear output
dynamics, (23) and (24) are imposed as equality con-
straints.

(c) PHZD Condition: The relative degree two outputs must
be zero at the beginning of each domain, i.e., the
condition in (27) must be satisfied.

(d) Periodicity of an orbit: Post impact states at the last
node at the current domain must be equal to the first
node of the next domain.

(e) Parameter consistency: The parameters, (αi, βi, vid) and
the time T i

I , at each time step, i, need to be consistent
and constant throughout and between each domain.

(f) Domain of admissibility: The domain of admissibility
constraints, (5), must be satisfied to ensure holonomic
and unilateral constraints are met.

(g) Guard condition: To ensure that the system reaches the
appropriate guard condition, the conditions in (6) are
imposed on the last node.

(h) Holonomic constraints: (3) and (2), ensure that the holo-
nomic constraints are held constant. However, to ensure
that they are held at the correct constant, additional set
of constraints are required that explicitly enforce this,
i.e. the constraint, η − η̄0 = 0, is enforced at the first
node of each domain.

(i) Time parameterization: According to (12), the parame-
ters β1 and β2 represent the linearized hip position in the
sagittal plane, δphip at the beginning and at the end of a
gait respectively. These conditions must be enforced at
the first and the last node of each domain, respectively.

(j) Walking Speed, Step Length and Foot clearance: A
desired forward walking speed, step length and swing
foot clearance may be provided to achieve the required
walking behavior.

(k) Foot retraction: The forward velocity of the swing foot
before impact must be negative. This reduces impact
loses and, when combined with the foot clearance
constraint, helps avoid cases of gaits with foot scuffing.

(l) Rigid human: The human subsystem is constrained
to have torso and arm angles fixed, with the torso
upright relative to the exoskeleton and the arms fixed
downwards.

ACKNOWLEDGMENT

The work of O. Harib and J. Grizzle was supported by
NSF Grant NRI-1525006. The work of A. Agrawal and K.
Sreenath was supported by NSF Grant IIS-1526515. The
work of A. Ames was supported by NSF Grant IIS-1526519.



REFERENCES

[1] “130 rehabilitation centers worldwide.” [Online]. Available: http:
//eksobionics.com/

[2] Cybathlon Championship for athletes with disabilities — ETH Zurich.
[Online]. Available: http://www.cybathlon.ethz.ch/en/

[3] “Rewalk 6.0 home.” [Online]. Available: http://rewalk.com/
[4] “Step into the future.” [Online]. Available: http://www.rexbionics.com/
[5] “Wandercraft,” http://www.wandercraft.eu/, accessed: 2016-07-12.
[6] 2010 ADA Standards for Accessible Design, https://www.ada.gov/

regs2010/2010ADAStandards/2010ADAStandards.pdf, September
2010.

[7] A. D. Ames, “Human-inspired control of bipedal walking robots,”
IEEE Trans. Autom. Control, vol. 59, no. 5, pp. 1115–1130, 2014.

[8] A. D. Ames, E. A. Cousineau, and M. J. Powell, “Dynamically stable
bipedal robotic walking with NAO via human-inspired hybrid zero
dynamics,” in Proc. of the 15th ACM Int. Conf. on Hybrid Systems:
Computation and Control, 2012, pp. 135–144.

[9] B. Chen, H. Ma, L. Y. Qin, X. Guan, K. M. Chan, S. W. Law, L. Qin,
and W. H. Liao, “Design of a lower extremity exoskeleton for mo-
tion assistance in paralyzed individuals,” in 2015 IEEE International
Conference on Robotics and Biomimetics (ROBIO), Dec 2015, pp.
144–149.

[10] X. Da, O. Harib, R. Hartley, B. Griffin, and J. W. Grizzle, “From 2D
design of underactuated bipedal gaits to 3D implementation: Walking
with speed tracking,” IEEE Access, vol. 4, pp. 3469–3478, 2016.

[11] X. Da, R. Hartley, and J. W. Grizzle, “First steps toward supervised
learning for underactuated bipedal robot locomotion, with outdoor
experiments on the wave field,” in International Conference on
Robotics and Automation (ICRA). Pre-print (to appear), 2017.
[Online]. Available: http://web.eecs.umich.edu/faculty/grizzle/papers/
XingyeDa ICRA2017.pdf

[12] A. M. Dollar and H. Herr, “Lower extremity exoskeletons and active
orthoses: Challenges and state-of-the-art,” IEEE Trans. Robot., vol. 24,
no. 1, pp. 144–158, 2008.

[13] A. Esquenazi, M. Talaty, A. Packel, and M. Saulino, “The rewalk
powered exoskeleton to restore ambulatory function to individuals with
thoracic-level motor-complete spinal cord injury,” American journal of
physical medicine & rehabilitation, vol. 91, no. 11, pp. 911–921, 2012.

[14] M. Fontana, R. Vertechy, S. Marcheschi, F. Salsedo, and M. Bergam-
asco, “The body extender: A full-body exoskeleton for the transport
and handling of heavy loads,” IEEE Robot. Autom. Mag., pp. 34–44,
December 2014.

[15] K. Galloway, K. Sreenath, A. D. Ames, and J. W. Grizzle, “Torque
saturation in bipedal robotic walking through control lyapunov func-
tion based quadratic programs,” IEEE Access, vol. 3, pp. 323–332,
Apr. 2015.

[16] P. E. Gill, W. Murray, and M. A. Saunders, “Snopt: An sqp algorithm
for large-scale constrained optimization,” SIAM review, vol. 47, no. 1,
pp. 99–131, 2005.

[17] R. D. Gregg, T. Lenzi, L. J. Hargrove, and J. W. Sensinger, “Virtual
constraint control of a powered prosthetic leg: From simulation to ex-
periments with transfemoral amputees,” IIEEE Trans. Robot., vol. 30,
no. 6, pp. 1455–1471, October 2014.

[18] ——, “Virtual constraint control of a powered prosthetic leg: From
simulation to experiments with transfemoral amputees,” IEEE Trans.
Robot., 2014.

[19] B. Griffin and J. Grizzle, “Walking gait optimization for accommoda-
tion of unknown terrain height variations,” in 2015 American Control
Conference, 2015, pp. 4810–4817.

[20] J. W. Grizzle, C. Chevallereau, A. D. Ames, and R. W. Sinnet,
“3D bipedal robotic walking: models, feedback control, and open
problems,” IFAC Proceedings Volumes, vol. 43, no. 14, pp. 505–532,
2010.

[21] J. Grundmann and A. Seireg, “Computer control of multi-
task exoskeleton for paraplegics,” in Proceedings of the Second
CISM/IFTOMM International Symposium on the Theory and Practice
of Robots and Manipulators, 1977, pp. 233–240.

[22] K. A. Hamed and R. D. Gregg, “Decentralized feedback controllers
for exponential stabilization of hybrid periodic orbits: Application to
robotic walking,” in American Control Conference, Boston, MA, July
2016, pp. 4793–4800.

[23] A. Hereid, E. A. Cousineau, C. M. Hubicki, and A. D. Ames,
“3D dynamic walking with underactuated humanoid robots: A direct
collocation framework for optimizing hybrid zero dynamics,” in IEEE
Int. Conf. on Robot. and Autom., 2016.

[24] D. Hristic, M. Vukobratovic, and M. Timotijevic, “New model of
autonomous’ active suit’for distrophic patients,” in Proceedings of the
International Symposium on External Control of Human Extremities,
1981, pp. 33–42.
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