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ABSTRACT This paper presents a novel reinforcement learning (RL) framework to design cascade
feedback control policies for 3D bipedal locomotion. Existing RL algorithms are often trained in an end-
to-end manner or rely on prior knowledge of some reference joint or task space trajectories. Unlike these
studies, we propose a policy structure that decouples the bipedal locomotion problem into two modules
that incorporate the physical insights from the nature of the walking dynamics and the well-established
Hybrid Zero Dynamics approach for 3D bipedal walking. As a result, the overall RL framework has several
key advantages, including lightweight network structure, sample efficiency, and less dependence on prior
knowledge. The proposed solution learns stable and robust walking gaits from scratch and allows the
controller to realize omnidirectional walking with accurate tracking of the desired velocity and heading
angle. The learned policies also perform robustly against various adversarial forces applied to the torso
and walking blindly on a series of challenging and unstructured terrains. These results demonstrate that
the proposed cascade feedback control policy is suitable for navigation of 3D bipedal robots in indoor and
outdoor environments.

INDEX TERMS Motion control, Legged locomotion, Machine learning

I. INTRODUCTION

WHILE human and biological bipeds can naturally
learn complex motion planning, it is still a challeng-

ing task for bipedal robots due to the highly unstable nature
of bipedal robots. Properties like underactuation, unilateral
ground contacts and impacts, nonlinear dynamics, and high
degrees of freedom significantly increase the complexity of
synthesizing feasible robot motions. Various learning-based
solutions, especially with the recent progress on deep learn-
ing, have shown remarkable performance in solving chal-
lenging control problems in bipedal locomotion. In general,
these learning-based approaches can be further classified
into end-to-end methods, and reference trajectory learning
approaches.

Bipedal locomotion’s most common learning objective is
a feedback control policy that directly maps the state inputs

to the torque control output or the joint angles. Typically,
this policy is constructed in an end-to-end manner, and
the learned policy serves the general purpose of stability
maintenance (i.e., walking without falling). Various learning
methods have shown effectiveness in learning an end-to-
end control policy. Policy gradient based approaches such as
DDPG and PPO have demonstrated competitive performance
for general robotic locomotion tasks in simulations with end-
to-end learning using torque output policies [1], [2] and
real-world experiments (typically combined with dynamics
randomization) using torque output-based end-to-end learn-
ing [3], [4] and joint angle-based end-to-end learning [5], [6].

Some more advanced methods also seek to achieve veloc-
ity tracking [7], push-recovery [8], and walking in various
terrain conditions [9] through more structured frameworks.
The velocity tracking policy from [7] relies on prior knowl-
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FIGURE 1: Overview of the proposed learning framework. A cascade controller combines the RL motion planning module
with the feedback regulator module to realize stable and robust locomotion. The learned policy is successfully transferred to
hardware, allowing the Digit robot to walk on different challenging terrains using the same policy. An overview video of all the
experimental results can be found at https://sites.google.com/view/rl-cmpd.

edge of a good joint reference trajectory and only learns
small compensations added to the known reference trajectory.
Siekmann et al. proposed to combine PPO with recurrent
neural network (RNN) for learning the direct control policy
for Cassie [10]. Some also extend the deep reinforcement
learning approach with provided guidance for motion mim-
icking [11], [12].

Another learning objective is to acquire a reference track-
ing trajectory of a selected anchor point (e.g., the center of
gravity point of the upper torso). A lower-level controller
then seeks to track such a learned reference through basic
model information such as kinematics. Morimoto et.al. [13],
[14] learned the Poincare map of the periodic walking pattern
and applied the method to two 2D bipedal robots. Some
recent work has proposed to learn the joint-level trajectory
as the reference motion through supervised learning [15]
and reinforcement learning [16]–[18]. The authors in [19]
learn linear policies that map the reduced robot’s state to
parameterized elliptical trajectories for the robot’s feet. These
approaches often simplify the design of the lower-level track-
ing, which can be as simple as a PD controller.

Despite the empirical success, most of the aforementioned
learning-based approaches are sampling inefficient (millions
of data samples) and are usually over-parameterized (thou-
sands of tunable parameters). It is also worth emphasizing
that the reference-trajectory-learning approach makes it eas-
ier to induce gait symmetry and smooth control signals within
the bounded admissible space. On the other hand, the end-
to-end approach is difficult to handle symmetry and torque
constraints, hence may lead to unnatural walking gaits and
sparky control signals [20].

In this work, we propose a trajectory-based RL framework

to address some of the challenges found in the learning of
bipedal locomotion. By decoupling the problem of bipedal
locomotion as a two-phase process: trajectory planning and
feedback regulation, we propose a modular solution that
incorporates the physical insights of dynamic locomotion and
its hybrid nature into the learning process of the policy. In
particular, we leverage the exploration potential of RL algo-
rithms to find reference trajectories for dynamic locomotion
using a reduced state of the robot. Then, we improve these
reference trajectories using feedback regulation to obtain
stable and robust walking gaits. This decoupled structure
significantly simplifies the neural network’s complexity, en-
hancing sampling efficiency and robustness of the learned
policy.

A method similar to ours is presented in [21], where the
authors propose a decoupled structure that uses DRL to
learn a Finite State Machine (FSM) based policy that outputs
reference trajectories for particular joints of the robot. A
simple linear balance feedback controller is then used on top
of the reference trajectories to produce robust locomotion.
In our proposed work, we compute continuous joint-space
trajectories by means of 5th-order Bézier Polynomials. In
addition, we use different high-level commands, e.g., desired
velocity tracking, as part of the reduced-order state of our
learning framework, whereas [21] uses the full-order state of
the robot in addition to desired gait parameters: step length,
step duration, and maximum swing foot height during a step.

Our proposed method is evaluated with different robot
models, including simulation of the bipedal robots Rabbit,
Cassie, and Digit. In addition, we show that the proposed
controller structure can be used to transfer the learned policy
successfully to hardware with minimal tuning. The resulting
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controller is extensively tested in hardware with the Digit
robot, showing effective velocity tracking performance, and
robustness to different disturbances such as external adver-
sarial forces and uneven terrains.

Preliminary results of this work were presented in con-
ference papers [18], [22]. In this paper, we extend the
preliminary results to further increase the efficiency of the
learning method, consider an additional degree of freedom
to include constrained arm’s motion into the walking gait,
include additional regulations to improve the performance of
the controller, and perform an extensive series of indoors and
outdoors experiments to demonstrate the good performance
of the learned policy on hardware. Our contribution can be
summarized as follows:

• We propose a complete RL framework to learn robust
and stable walking gaits from scratch for 3D bipedal
robots. The method takes insights from the hybrid and
symmetric nature of dynamic walking to significantly
reduce the state and action spaces of the policy, enhanc-
ing the sample efficiency of the learning process and
robustness of the walking gait.

• We design a regulator policy that uses simple but ef-
fective feedback regulators to improve the stability and
robustness of the learned walking gait. Different from
the earlier conference version, we also develop an es-
timator of the terrain slope to improve the swing foot
orientation regulator, which is the key to successful
outdoor experiments. Moreover, we add a stance foot
regulation that facilitates velocity tracking on hardware.

• We demonstrate that the proposed framework can be
easily extended to robots with different DoF and mor-
phology. We use the proposed learning framework to
control the bipedal robot Cassie (no arm joints) and
the humanoid robot Digit (with arm joints). The results
show the same RL framework learns stable walking
gaits for both robots. The results have also been vali-
dated extensively in both simulation and hardware.

• We conduct extensive experiments to test the perfor-
mance of the policy on real hardware, demonstrating
the learned policy has a good tracking performance
on the desired waking velocity and the desired torso
orientation. These results enable the application of the
proposed RL framework with confidence for terrain
navigation in indoor and outdoor environments. Most
of the learning frameworks for bipedal locomotion pro-
posed in the literature do not provide details about the
performance of the learned policy for tracking high-
level commands like the torso’s desired velocity and
orientation.

The remainder of the paper is organized as follows. Sec-
tion II introduces the problem of bipedal locomotion and
its formulation as a cascade motion control framework. In
Section III we present the motion policy design as a RL
problem with a reduced state and action spaces. Section IV
introduces the design of the feedback regulator policy used

to convert the joint action commands into admissible torques
applied to the joints. In Section V, we show the details of
the application of the proposed framework to two different
bipedal robots, Cassie and Digit, and Section VI presents
the simulation and hardware results. Finally, Section VII
provides concluding remarks about this work.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. BIPEDAL ROBOT MODEL
Bipedal locomotion consists of a collection of phases of con-
tinuous dynamics with discrete events that trigger the transi-
tions between these continuous dynamics phases; formally,
modeling both continuous and discrete dynamics together
results in a hybrid system model. The configuration space
Q of a robot can typically be represented by a floating-base
generalized coordinate system, defined as

q = [pb, φb, qr] ∈ Q, (1)

where pb = (qx, qy, qz) ∈ R3 denotes the relative position
of the robot’s base, φb ∈ SO(3) denotes the orientation of
the robot’s base frame, and qr ∈ Rm denotes the relative
angles of articulated joints. Throughout this paper, we use
ṗb = (vx, vy, vz) to represent the velocity of the robot’s
frame, φb = (qψ, qθ, qφ) as the Euler’s angle representation
(roll, pitch, yaw) of the robot’s base orientation, and φ̇b =
(q̇ψ, q̇θ, q̇φ) represents the angular velocity of the robot’s
base.

Letting x = (q, q̇) ∈ X denote the robot states, u ∈ U ⊆
Rm a vector of actuator inputs, and ω ∈ Ω ⊆ Rw a vector of
disturbances and uncertainties, the hybrid system model for
bipedal locomotion can be defined as

Σ :

{
ẋ = f(x, u;ω) x /∈ D
x+ = ∆(x−) x− ∈ D, (2)

where, f represents the continuous dynamics. The switching
surface D is typically the (hyper-) surface of points corre-
sponding to the height of the swing leg above the ground
being zero, and ∆ : D → X , the reset map or impact map
[23], determines the post-impact state values x+ just after
switching as a function of the pre-impact state values x− just
before switching.

B. BIPEDAL LOCOMOTION PROBLEM
In general, the bipedal locomotion problem seeks to establish
a motion control policy π : X × C → U with C being
a set of high-level locomotion commands, such that some
properties are achieved. For example, the desired properties
may include (i) following commands, (ii) maintaining feasi-
bility condition, (iii) satisfying admissibility condition, (iv)
exhibiting naturalistic locomotion, and (v) robustness against
uncertainties and disturbances. Here, we mathematically de-
fine the aforementioned properties as follows to define the
bipedal locomotion problem formally.

Following Command. We would like the robot to follow
specific high-level commands, such as desired velocities or
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target locations. In this paper, we are particularly interested
in velocity tracking, which can be defined as the asymptotic
convergence to the desired velocity profile vd(t), given as,

lim
t→∞

∥∥v̄(x)− vd(t)
∥∥ = 0, (3)

where v̄(x) denotes the average velocity over a walking step.
State Feasibility Condition. Let Z ⊆ X be a set of forbid-
den states that are prohibitive for the robot. Hence the feasi-
bility criterion is equivalent to ensuring the set X ∗ = X \ Z
forward invariant given the dynamics model (2), i.e.,

∀x(0) ∈ X ∗ → x(t) ∈ X ∗, ∀t ≥ 0. (4)

Input Admissibility Condition. Let U∗ be the nominal
admissible actuator input set of the robot determined by
the actuators’ physical capability. The admissibility criterion
requires the actuator inputs are persistently feasible, i.e.,

π(x, c) ∈ U∗ ∀x ∈ X ∗, c ∈ C. (5)

Naturalistic Locomotion. Moreover, the bipedal applica-
tions also expect naturalistic motion for various causes (e.g.,
environment adaptation and energy efficiency). Examples
of naturalistic motion include maintaining the upper-body
straight, the Center-of-Mass (CoM) within the support poly-
gon described by the robot feet, avoiding the collision of the
robot’s feet with each other, etc. In this paper, we consider the
torso angle limits and the constrained Center-of-Mass (CoM)
position to characterize the naturalistic behavior. In particu-
lar, let θtor(x) : X → SO(3) represents the orientation of
the robot’s torso, the following constraint is expected to be
satisfied:

θtor(x) ∈ Θ, ∀x ∈ X , (6)

where Θ ∈ SO(3) represents the admissible range for the
roll, yaw and pitch angles of the robot’s torso. In addition,
let pcom : X → R3 be the CoM position with respect to
the stance foot in the Cartesian coordinate. The following
condition confines the projection of CoM within a enclosed
region determined by both feet and the height of CoM within
a certain threshold:

pcom(x) ∈ P ∀x ∈ X , (7)

where P ⊂ R3 represents the admissible CoM range.
Problem 1: [The Bipedal Locomotion Problem] Consider
the robot model in (2), the Bipedal Locomotion Problem
seeks to establish a motion control policy π : X × C → U ,
such that the criterion defined in (3) - (7) are satisfied with
the presence of model uncertainty and external disturbance.

In practice, solving the above problem is challenging as
the hybrid dynamical system in (2) is too complex to have
a model-based solution that guarantees the satisfaction of all
desired properties. Moreover, the various properties specified
cannot be satisfied simultaneously in principle (e.g., the
velocity tracking requirement may be relaxed in exchange for
the safety assurance). In this paper, we propose to solve the

Robot/
Environment

External
commands

FIGURE 2: The cascaded structure of the proposed motion
control policy framework for bipedal locomotion.

problem using a cascaded structure that combines the rein-
forcement learning (RL) based motion planning and model-
based feedback control design.

C. CASCADED MOTION CONTROL FRAMEWORK
Our proposed approach takes inspiration from the general-
ized Hybrid Zero Dynamics (G-HZD) framework presented
in [24], [25]. As shown in Figure 2, the motion control
policy π in Problem 1 consists of a feature selection module,
G, and two cascaded policies: a motion policy πy and a
feedback control policy πm. To clearly identify the objectives
of this paper, we formally define the proposed motion control
framework as follows, where the design of each component
will be presented in detail in the following sections.
Problem 2: [Cascade Motion Control Policy Design] The
motion control policy π in Problem 1 can be designed as

π = πm(·) ◦ πy(·) ◦ G(·). (8)

The feature selection module G : X × C → S maps the full-
order states and external commands to a reduced-dimensional
feature states s ∈ S . The motion policy πy(·) : S → A will
be designed to generate feasible joint actions α ∈ A, with A
being the action space, that satisfy the conditions defined in
(3) - (7). Finally, the feedback control policy πm(·) : X ×
A → U converts the joint action commands to admissible
actuator inputs with the objective of keeping the robot from
falling and simultaneously satisfying (3) - (7).

While there are various ways to design the motion policy
for bipedal locomotion in literature, our work particularly fo-
cuses on reinforcement learning (RL) design approaches [6],
[10], [11]. Despite recent success of RL-based approaches in
robust sim-to-real transfer of the policy on robot hardware,
existing approaches still suffer from sampling inefficiency
and often requires prior knowledge of good reference trajec-
tories in training [10], [11]. The proposed trajectory-based
RL motion policy design (see Section III) aims to tackle
existing limitations of RL-based approaches in bipedal loco-
motion by incorporating insights from model-based control
methods with data-driven reinforcement learning to realize
robust bipedal locomotion policies. In addition, an intuitive
feedback regulation controller policy (see Section IV) is
designed to improve the overall robustness of the motion
policy.
Remark 1: A classic end-to-end RL solution to the bipedal
locomotion problem can be considered as a special case of
Problem 2. Instead of using the decoupled structure, the end-
to-end approaches train a single neural network (NN) policy
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π(·) : X → U that maps the full order states directly
to the actuator inputs. However, this approach blindly uses
all the data available without insights about the nature or
structure of the bipedal locomotion problem, resulting in
largely inefficient training with learned policies that are not
feasible to be implemented safely in hardware [1].

III. MOTION POLICY DESIGN
In this section, we present a sample efficient RL framework
for the motion policy design problem described in Section II.
The overall structure of the proposed RL-based cascade
motion policy is presented in Figure 3. We will start with
the formal definition of the RL framework for our later
discussion. Then we will comprehensively discuss the design
of reduced state and action spaces and the specific learning
procedure for bipedal locomotion.

A. REINFORCEMENT LEARNING FRAMEWORK
A typical reinforcement learning approach considers a
Markov Decision Process (MDP) as a tuple of components,
defined as

M := (S,A,P, r, ξ, γ). (9)

Here S is the feature state space, and A is the feasible action
space. Specifically, given st ∈ S at time t, an agent (i.e., the
motion planner) takes an action αt ∈ A, transits into the next
feature state st+1 ∈ S according to the transition probability
P(st+1|st, αt) and receives a reward r(st, αt, st+1). More-
over, ξ denotes the distribution of the initial state s0 ∈ S
and γ ∈ (0, 1) denotes the discount factor. The goal of the
reinforcement learning (RL) framework is to find an optimal
motion policy π∗ : S → A that maximizes a long-term
accumulated reward, defined as

J(π) = (1− γ)E[

∞∑
t=0

γtr(st, αt, st+1)]. (10)

To cast bipedal motion policy as a RL problem, one re-
quires (i) adapting the model (2) to the MDP form of (9), and
(ii) configuring the criterion in Problem 1 to align with the RL
settings. It is immediate that the probabilistic transition part
in (9) is equivalent to the described bipedal robot model (2).
The stochastic transition of the MDP process captures the dis-
turbances and uncertainties ω such as the random sampling of
initial states in the policy training and dynamics uncertainty
due to the random interactions with the environment (e.g.,
early or late ground impacts). Moreover, the desired proper-
ties in Problem 1 can be either characterized as rewards or
hard constraints in RL. In this paper, we formulate criterion
(3), (5), (6), (7) as rewards, and (4) as hard constraints.

B. STATE SPACE
In our proposed framework, a neural-network motion policy
πy maps a feature s ∈ S to an action α ∈ A via a probability
distribution πy(·|s). In particular, the feature can be decom-
posed into an endogenous component, ζ, and an exogenous

component, η. The endogenous component ζ is a reduced di-
mensional representation of the robot states. The exogenous
component η corresponds to the external commands, such as
desired walking speeds or turning directions, terrain slope,
whose transitions will not be affected by the agent through
actions [26]. The inclusion of exogenous components enables
a single motion policy to capture various locomotion tasks
and smooth transitions among these tasks.
Reduced Dimensional Feature Representation. Many ex-
isting learning-based approaches for bipedal locomotion use
the full-order state as the input of the neural network pol-
icy, which significantly reduces the sampling efficiency of
the training process, resulting in unnecessarily large neural
networks and prolonged training time. In this paper, we
take inspiration from classic model-based approaches in
bipedal locomotion to design a lightweight neural network
policy structure to improve sampling efficiency and reduce
the training time. In particular, we choose as a reduced
set of features of the policy the average velocity of the
robot’s pelvis, the desired velocity of the robot, and the error
between the desired and the actual average velocity. This
selection is inspired by the Hybrid Zero Dynamics (HZD)-
based feedback controllers for bipedal locomotion [27] and
the simplicity but effectiveness of the LIP model to provide
reference trajectories of the COM and step length [28].

C. ACTION SPACE
In our motion planning framework, the action determines the
parameterized desired joint trajectories. It has been shown
that trajectory actions typically provide a better represen-
tation of locomotion than the direct actuator inputs [29].
Parameterized trajectories also allow model-free joint ref-
erences to be tracked by the feedback controller, thereby
enabling the seamless sim-to-real transfer of the learned
policy on robot hardware.

As discussed later in this section, the motion policy does
not need to determine desired trajectories for all actuated
joints of the robot. Let N be the number of actuated joints
determined by the motion policy πy , the desired trajectory of
each joint i ∈ 0, . . . , N will be parameterized as an M -th
order Bézier polynomial with coefficients αi ∈ RM+1, given
as

ydi (τ, αi) :=

M∑
k=0

αi[k]
M !

k!(M − k)!
τk(1− τ)M−k, (11)

where τ = t−t−
Tstep

∈ [0, 1] is the scaled time-based phase
variable over one walking step with t− being the time at the
beginning of the step, and Tstep is the time duration of one
walking step.
Dimension Reduction of Action Space. In order to reduce
the output size, thereby the overall size, of the neural network
policy πy , we reduce the action space dimension by incorpo-
rating the unique nature of bipedal locomotion.
Redundant Joints. The desired trajectory of some actuated
joints will be directly commanded by the feedback regulator
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FIGURE 3: Overall structure of the proposed Trajectory-based RL framework. The trajectory planning phase is done by the
neural network policy while the feedback regulation block use the robot’s sensor information to guarantee the stability of the
walking gait and the velocity tracking performance.

policy πm described in Section IV. Therefore, the motion
policy πy does not need to provide reference trajectories for
these joints, significantly reducing the number of outputs
required. Specifically, the torso regulation takes care of the
stance leg hip roll and pitch joints, the swing foot orientation
regulation takes care of the swing ankle roll and pitch joints,
and the stance foot regulation takes care of the stance ankle
roll and pitch joint. We provided a detailed description of
each of these regulations in the following section. Moreover,
if arm joints are present (e.g., Digit, see Section V), we can
treat the arm as a single pendulum by controlling the motion
of the shoulder pitch joint only through the motion policy.
Thus, we can lock other arm joints at constant angles, further
reducing the policy outputs.
Gait Symmetry. For bipedal locomotion, there exists symme-
try between the right and left stance gaits. This allows us
to only learn the right stance gait parameters, and determine
the left stance gait parameters using the symmetry condition.
Assuming that the set of coefficients for the right stance gait
αR is given, the set of coefficients for the left stance gait αL

can be computed by

αL = TαR (12)

where T ∈ RN×N is an invertible sparse transformation
matrix that captures the symmetry between the robot’s joints
on the right and left sides.
Impact Invariance. To encourage the smoothness of the con-
trol actions after the swing foot impacts the ground, we
enforce an equality constraint such that at the beginning
of every step, the initial point of the Bézier polynomial
(determined by αRi [0]) coincides with the current position of
the i-th robot’s joint. To determine the switching condition
between right and left stances, we detect the impact of the
swing foot with the ground by estimating the ground reaction

force (GRF) and comparing it with a fixed threshold easily
tuned based on experiments performed both in simulation
and hardware. Although this threshold is kept fixed during
training and evaluation of the policy, early or late contact con-
ditions are indirectly managed by the learned policy through
the update of the reference trajectories at the switching
conditions. Finally, we enforce the position of the actuated
joints to be the same at the end of the right stance and the
beginning of the left stance. This encourages continuity in
the joint position trajectories after switching the stance foot.
When using Bézier polynomials, this condition can be easily
enforced through αRi [M ] = αLi [0]. Therefore, two Bézier
coefficients for each joint can be obtained through the above
conditions. This means we only need to find the remaining
M − 1 coefficients for each of the N reference trajectories,
which results in an action space of dimension N ×M − 1.

D. LEARNING PROCEDURE
The proposed framework can use any RL algorithm that
handles continuous action spaces, including but not limited
to evolution strategies (ES), proximal policy optimization
(PPO) [2], and deterministic policy gradient (DDPG) [30].
In this work, we use the ES algorithm because of its simple
implementation for parallel processing, and its promising
results in environments with a high number of time steps in
an episode, actions with long-lasting effects, or with no good
estimations available for the value function [31]. All of these
conditions are present in the problem of bipedal locomotion.

The reward function adopted in this work is determined
by a vector of 9 customized rewards with their respective
weights w. Specifically:

r = wT [rvx , rvy , rh, ru, rCoM, rang, rangvel, rfd, rstf]
T . (13)

These rewards are designed accordingly to the desired prop-
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erties described in Section II-B by criteria (3) - (7). That is,
encouraging the policy performance in four sub-tasks: veloc-
ity tracking, feasible states (height maintenance), admissible
actions (energy efficiency), and naturalistic behavior.

To encourage better velocity tracking performance for
desired average walking speeds in the longitudinal and lateral
direction, rewards rvx , rvy are defined as

rvx =

{
max (ρv/(v̄x − vdx + ε), 1) if |v̄x − vdx| ≤ evx
−ρv/(v̄x − vdx)2 if |v̄x − vdx| > evx

rvy =

{
max (ρv/(v̄y − vdy + ε), 1) if |v̄y − vdy | ≤ evy
−ρv/(v̄y − vdy)2 if |v̄y − vdy | > evy

where ρv is a scaling variable that makes the reward function
sharp about the desired walking velocity to encourage better
velocity tracking, ε is a bias term to prevent singularities
when the tracking error is zero, and evx, evy are the bounds
for the maximum error allowed in the tracking of the desired
average velocity.

To encourage the policy to maintain a desired robot’s
height, we define the reward

rh =


max {(qz/qdz )2, 1} if |qz − qdz | ≤ eqz, qz ≤ qdz
max {(qdz/qz)2, 1} if |qz − qdz | ≤ eqz, qz > qdz
−(qz − qdz )2 if |qz − qdz | > eqz

where qdz is the desired height and eqz is the maximum error
allowed for the height of the robot’s base.

The torque efficiency reward encourages the learning to
reduce the torque applied to the joints.

ru = −‖u‖2 (14)

Four rewards are designed to encourage the naturalistic
behavior of the walking gaits by keeping the center of
mass inside the support polygon, keeping the torso upright
during the walking motion, and keeping the distance between
the feet within a desired nominal range. In particular, (15)
handles the case when pxycom, the projection of the center of
mass on the xy plane, is out of P , the area determined by a
radius of 0.1m about the midpoint between the projection of
the two feet on the xy plane, denoted by Q.

rCoM =

{
ρd/d if pxycom ∈ P
−1/ρd(d− 0.1)2 if pxycom /∈ P

(15)

where ρd is a scaling variable, and d is the distance between
pxycom and Q.

In (16) and (17), the torso’s angles (qψ, qθ, qφ) and angular
velocities (q̇ψ, q̇θ, q̇φ) are used to penalize the deviation of the
torso from an upright position during the walking motion.

rang = −(q2ψ + q2θ + q2φ) (16)

rangvel = −(q̇2ψ + q̇2θ + q̇2φ) (17)

To prevent that the robot’s feet spread apart from each other
significantly, or the collision of the feet between each other, a

penalization to the reward based on the distance between the
robot’s feet is added in the form of (18).

rfd =


−(∆f −∆fmin)2 if ∆f<∆fmin

−(∆f −∆fmax)2 if ∆f>∆fmax

0 otherwise
(18)

where ∆fmin and ∆fmax are the minimum and maximum
desired distance distance between the robot’s feet.

Finally, the reward in (19) is used to encourage the stance
foot to remain static on the ground.

rstf = −‖vstf‖2 − ‖wstf‖2 , (19)

where vstf and wstf correspond to the linear and angular
velocity of the stance foot.

IV. FEEDBACK REGULATOR POLICY DESIGN
The feedback regulator policy πm modifies some of the
trajectories generated by the motion planning policy πy for
some of the robot’s joints and generates new trajectories for
some other joints. This allows the motion planning policy
πy to reduce the number of outputs needed to be learned,
significantly improving the sample efficiency of the learning
framework. The regulations applied are intuitive yet powerful
and allow the controller to compensate for uncertainties in
the model used for training the high-level planner policy
and adapt it to unknown disturbances like external forces or
challenging irregular terrains that the learned policy has not
experienced during training in simulation. These regulations
were originally proposed by Raibert in [32], and they have
been applied successfully on the control and balance of
legged robots in several works, including [33]–[36]. As
shown in Figure 3, the feedback regulations are composed of
two submodules: i) trajectory regulations and tracking, and
ii) direct torque regulations for torso orientation.

A. TRAJECTORY REGULATIONS AND TRACKING
Letting qd be the desired trajectories for the robot’s actuated
joints provided by the motion policy πy , then the regulated
trajectories qreg are determined by

qreg = qd + Aδq, (20)

where δq is the vector of compensations applied on top of the
trajectories for some of the robot’s joints directly related with
the swing foot placement, swing foot orientation and stance
foot orientation. The matrix A is an assignation matrix that
assigns the compensation term with its corresponding joint.
Thus, we will use simple PD controllers to track the regulated
reference trajectories at the joint level to compute the torque
inputs for the actuated joints of the robot. In this paper, the
PD controllers are defined as

u = −Kp(q − qreg)−Kd(q̇ − q̇reg), (21)

where Kp and Kd are the matrices of PD gains associated
with the actuated joints of the robot.
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The following joint regulations are applied in this paper:

δq =
[
δswhr , δ

sw
hp , δ

sw
hy , δ

sw
tp , δ

sw
tr , δ

st
tp, δ

st
tr

]T
, (22)

which is determined by:

δq = P×E + B, (23)

where, P is a gain matrix, E is a vector of velocity errors, and
B is a vector of feed-forward correction terms, respectively
defined as follows:

P =



0 0 SyK
sw
phr SyK

sw
dhr 0

Ksw
php Ksw

dhr 0 0 0

0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

Kst
ptp 0 0 0 0
0 0 Kst

ptr 0 0


, (24)

E =


v̄x − vdx
v̄x − vlsx
v̄y − vdy
v̄y − vlsy
qφ − qdφ

 , (25)

B =
[
βy βx 0 ξtp ξtr 0 0

]T
. (26)

The underlying motivation of the joint regulators is de-
scribed as follows. The swing foot regulations, i.e., δswhp
δswhr , and δswhy , are originally inspired by the LIP model and
has been applied to improve the stability and robustness
of model-based feedback controller for 3D bipedal based
on the tracking of the average walking speed [32]–[36].
The compensation for lateral speed regulation δswhr gives a
trajectory compensation for the swing leg’s hip roll angle.
Analogously, δswhp , the compensation for the longitudinal
speed regulation, outputs a trajectory compensation for the
swing leg’s hip pitch joint. Moreover, δswhy , the compensation
for the heading angle of the robot’s torso, adds a trajectory
compensation to the swing leg’s hip yaw angle to keep the
torso’s yaw orientation at the desired angle. Sy ∈ {1,−1}
depends on the swing foot being left or right, v̄x, v̄y are the
longitudinal and lateral average velocities of the robot, vlsx ,
vlsy are the velocities at the end of the previous step, vdx, vdy
are the reference velocities, andKsw

php,K
sw
dhp,K

sw
phr,K

sw
dhr are

the proportional and derivative gains of hip pitch and roll
joints, respectively. The phase variable τ is used to smooth
the regulation at the beginning of each walking step and
reduce torque overshoots. The terms βx and βy are outputs
of an additional PI controller used to compensate for the
accumulated error in the velocity and prevent the robot from
drifting towards a non-desired direction.

The swing foot orientation regulations, i.e., δswtp and δswtr ,
are applied to keep the swing foot parallel to the walking
surface to ensure a proper landing orientation of the swing
foot. These compensations are decoupled for the roll (δswtr )
and pitch (δswtp ) joints of the robot’s ankle of the swing foot.

These regulations are obtained by applying decoupled inverse
kinematics (IK) to the robot’s leg. Therefore, we represent
them as ξtp and ξtr in (26) as they are dependant on the
kinematic tree of the robot and the slope estimation of the
walking surface. To estimate the terrain’s slope, we assume
the stance foot of the robot is aligned with the terrain’s
surface, and we use the measurements of the robot’s IMU
and joint angles to compute the orientation of the stance
foot through forward kinematics. In Section V, we provide
detailed expressions for these regulations.

Finally, the stance foot orientation regulations, i.e., δsttp
and δsttr , are added to improve the tracking performance of
the desired average walking speed. The compensations δsttp
and δsttr are applied to the stance ankle’s pitch and roll joints,
respectively, to add a trajectory that modifies the current
position of these joints.

B. TORQUE REGULATIONS
The torque regulation module applies torque compensations
directly to stance hip joints to maintain the desired torso
orientation. The torso regulation is used to keep the robot’s
torso in an upright position, which is desired for a natural
motion of the walking gait. Assuming that the stance foot
is fixed to the ground during the single support phase and
that we have a discrete instantaneous impact during the
double support phase, the orientation of the torso is directly
controlled by the hip roll and hip pitch joints of the robot’s
stance leg. Therefore, the PD torque regulation denoted by
(usthr) and (usthp) can be applied respectively to the hip roll
and hip pitch joint of the stance leg to keep the torso upright.

[
usthr
usthp

]
= −

[
Kpψ Kdψ 0 0

0 0 SθKpθ SθKdθ

]
qψ − qdψ
q̇ψ − q̇dψ
qθ − qdθ
q̇θ − q̇dθ


in which, Sθ ∈ {1,−1} depends on the stance foot being left
or right, qdφ, qdθ , q̇dφ, and q̇dθ are desired torso roll and pitch
angles and angular velocities, and Kpψ,Kdψ,Kpθ,Kdθ are
manually tuned PD gains.

V. ILLUSTRATION EXAMPLES
In this section, we present the details of the implementation
of the proposed framework on an underactuated bipedal robot
Cassie and a humanoid robot Digit, both built by Agility
Robotics.

Cassie has 20 degrees of freedom (DoF) and 10 actuated
joints. Each leg has five actuated joints corresponding to the
motors located on the robot’s hip, knee and ankle, and two
passive joints corresponding to the robot’s shin and tarsus
joints. During the single support phase (only one foot on the
ground), the robot is underactuated because of its narrow feet.

Digit has the same leg morphology as Cassie, with ad-
ditional joints for the ankle roll, shoulder, and elbow. This
makes Digit a more complex system with 30 DoF and 20
actuated joints. Moreover, Digit is equipped with a full stack
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FIGURE 4: Robot model

Description Cassie Digit
dim(S) 6 6
Outputs of motion policy (N) 6 7
dim(A) 24 28
Hidden layers in NN 4 4
Number of units per layer 32 32
Total number of parameters NN 4184 4316

TABLE 1: Details of the state and action space and NN
implemented in Cassie and Digit.

of vision sensors, including an RGB camera, four depth cam-
eras, and a LiDAR. Figure 4 shows the kinematic structure of
Cassie and Digit with a description of the notation used for
the robot’s floating base and joints.

A. STATE AND ACTION SPACE
Following the motion policy design presented in Sec-
tion III-B, the feature state space S is determined by st =
(ηt, ζt) with ηt = (vdx, v

d
y), and ζt = (v̄x, v̄y), where

(v̄x, vy) are the average longitudinal and lateral velocity, and
(vdx, v

d
y) correspond to the desired average walking speed.

We consider the average speed during one walking step of
the robot, which lasts about 400 ms for Cassie and 500 ms
for Digit. Similarly, following the considerations discussed
in Section III-C, the number of outputs determined for the
motion planning policy for Digit is N=7, whereas for Cassie
N=6 because we do not have arms motion. More details about
the dimension of the state and action spaces are provided in
Table 1.

B. NEURAL NETWORK STRUCTURE
The structure of the lightweight neural network used in our
framework is shown in Figure 5, and the details about its
parameters are shown in Table 1. ReLU activation functions
are used between hidden layers, whereas the final layer
employs a sigmoid function to limit the range of the outputs.
Moreover, Table 2 shows a detailed comparison of the NN
structure of our method with state-of-the-art RL frameworks

323232 32

FIGURE 5: Detailed structure of the neural network imple-
mented for the robots Cassie and Digit. By incorporating
insights from the symmetry and dynamics of the walking
motion, plus simple but effective feedback regulations, we
reduce significantly the dimension of the state and action
spaces, which results in the smallest NN used for locomotion
of real 3D bipedal robots.

Method State Action Layers Units Total parameters

Ours 6 24 4 32 4184
[7] 80 10 2 256 89098
[10] 49 10 2 128 225034
[6] 277 10 2 512 410122

TABLE 2: Comparison of the total number of parameters
of the neural network with other learning frameworks for
bipedal locomotion with the robot Cassie. The neural net-
work implemented in our method has about 20x fewer pa-
rameters when compared with the other methods.

for bipedal locomotion. For a fair comparison, we only
considered studies implemented on the robot Cassie. Table 2
shows the NN is considerably smaller in size, making the
proposed RL framework more lightweighted, faster to train,
and feasible to implement on real-time controllers even on
budget-limited processors. This is the smallest NN imple-
mented in simulation and hardware to realize robust and
stable locomotion on the 3D bipedal robots Cassie and Digit
to the best of our knowledge.

C. TRAINING SETUP
To train the NN presented in Section V-B we used the
evolution strategies (ES) algorithm [31], using the tuning
parameters shown in Table 3. Our learning pipeline uses a
model-based balancing controller to obtain a pool of initial

Parameter Value

Population 24
Standard deviation 0.1
Decay standard deviation 0.9999
Limit standard deviation 1e-4
Learning rate 0.01
Decay learning rate 0.9999
Limit learning rate 1e-4

TABLE 3: Tuning parameters used for training of the policy
using Evolution Strategies (ES).
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Coefficient Cassie Digit

ρv 1e−3 1e−3

ε 1e−5 1e−5

evx 0.1 0.1
evy 0.2 0.2
qdz 0.91 1.00
eqz 0.05 0.04
ρd 0.01 0.01
d 0.1 0.1
∆fmin 0.2 0.2
∆fmax 0.4 0.4

w
[0.8, 0.2, 0.1, 0.01,
0.1, 0.5, 0.5, 5, 0]T

[0.3, 0.3, 0.2, 0.1,
0.5, 0.5, 0.5, 5, 0.5]T

TABLE 4: Coefficients and weights used for the rewards
during the training of each environment.

Parameter Range Unit

Link Mass [0.85, 1.15] kg
Link Center of Mass [0.95, 1.05] m

TABLE 5: Dynamic properties and sample range used for
dynamic randomization during training.

states that are feasible to be implemented in both simulation
and the real robot. We use a customized environment using
MuJoCo [37], with each episode starting from a robot’s state
chosen randomly from the pool of balanced initial states and
uniformly sampled desired walking velocities. We denote
that the trained policy learns to walk from scratch without
using previously known reference trajectories or policies pre-
trained with expert demonstrations. In Table 4, we detail
the values of the gains and bounds used for the rewards
introduced in Section III-D. We denote that the weight cor-
responding to rstf, the reward associated with keeping the
stance foot static during the step, is equal to zero for Cassie.
This reward was added particularly for the Digit because
the robot’s torso is significantly heavier than Cassie’s, which
caused Digit’s stance foot to slip on the ground. In addition,
to encourage policies that realize sustained walking, we
increased the episode length from 10000 simulation steps
(Cassie) to 15000 (Digit), which are equivalent to 5 and 7.5
seconds, respectively. The episode has an early termination if
any of the following conditions are violated:

|qψ| < 0.5, |qθ| < 0.5, |qφ| < 0.5,

|q̇ψ| < 2, |q̇θ| < 2, |q̇φ| < 2,

0.8 < qz < 1.2, ∆fmin < ∆f < ∆fmax,

(27)

where qz is the height of the robot’s pelvis and ∆f is the
distance between the feet. In addition, we use dynamic ran-
domization in our training process to improve the robustness
of the policy and the sim-to-real transfer success. These
parameters are shown in Table 5.

Figure 6 shows the evolution of the normalized mean
reward during training for both Cassie and Digit. The number
of training episodes needed by the policy to achieve a stable
reward is significantly higher in the Digit’s environment.

0 0.5 1 1.5 2 2.5 3

10
7

-0.2

0

0.2

0.4

0.6

0.8

1

FIGURE 6: Learning process of the trained policy for Cassie
(blue) and Digit (red).

Task Training time [h] Samples

Ours Various speeds 3 0.6e7
[7] One speed 2.5 -
[10] Various speeds 8 1e7
[38] Various speeds 16 -
[6] Various speeds - 1e7

TABLE 6: Comparison between different RL frameworks for
bipedal locomotion with the robot Cassie.

This result is expected given the higher level of complexity
imposed by the model of the Digit robot.

Comparing the sample efficiency between different RL
frameworks for bipedal locomotion is difficult because of the
particular settings used for each training setup (e.g., learning
task, episode length, policy update frequency, learning algo-
rithm, prior knowledge of the walking gait, performance of
the trained policy). In addition, not all the methods present
information about the number of samples required to learn
a stable walking gait. However, Table 6 shows a compari-
son between state-of-the-art learning-based frameworks for
bipedal locomotion. To promote a fair comparison, we only
considered methods that use the bipedal robot Cassie. The
results show that our method needs fewer samples than other
approaches for the reward to converge to a stable value. In
addition, Table 6 shows that the proposed framework requires
less wall time than other approaches, except for [7], which
learns policies that walk at a single desired walking speed
using known reference trajectories. On the other hand, our
method learns a single policy that tracks various speeds
without using known reference trajectories. The policy is
trained using a single 12-core CPU machine.

D. FEEDBACK REGULATIONS
The gains of the compensations described in Section IV-A
and Section IV-B for Cassie and Digit are detailed in Table 7.
We denote that the regulation for the stance foot orienta-
tion is applied only to Digit to enhance the speed tracking
performance of the controller in hardware experiments. In
addition, given the kinematic tree for Cassie and Digit, the
IK functions used in the swing foot orientation regulation
are defined in Table 7 as ξtr and ξtp, where λr and λp are
offsets that depend on the geometric design of the swing leg,
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Gain Cassie Digit

Ksw
phr 1 0.5

Ksw
dhr 0.05 0.03

Ksw
php 0.6 0.5

Ksw
dhp 0.01 0.1

Kst
ptp - 0.1

Kst
ptr - 0.02

Kpψ 100 3500
Kdψ 20 500
Kpθ 100 2000
Kdθ 20 500
ξtr qψ + qswhr + λr + γ qψ + qswhr + λr + γ
ξtp qθ + qswhp + λp + σ qθ + qswhp + λp + σ

TABLE 7: Gains and IK functions used in the feedback
regulator policy for Cassie and Digit.

and γ, σ are the inclination of the terrain with respect to the
robot’s floating base.

VI. SIMULATION AND EXPERIMENTAL RESULTS
Once the trained policy has been exhaustively tested in
simulation, we deploy the learned controller on the hardware
and evaluate its performance under challenging conditions
and terrains. This section shows the performance of the pro-
posed controller structure when evaluated in terms of speed
tracking, stability of the walking gait, and robustness against
external disturbances and challenging terrains. A sequence of
the learning process of the policy and the sim-to-real transfer
can be seen in the accompanying video.

A. SIMULATION RESULTS ON CASSIE
1) Speed Tracking
For evaluation of speed tracking, we assigned a desired
velocity profile with fast changes in both longitudinal (vx)
and lateral (vy) directions with respect to the robot’s body
frame. The results presented in Figure 7 show that the con-
troller keeps good tracking of the desired velocities in both
directions, and it can effectively handle the changes in the
speed profile even for large speed changes without significant
overshoot. We denote that depending on the combination of
the velocity profiles in both directions, the robot can perform
different behaviors such as walking in place, walking to the
right, left, forward, backward, and walking in a diagonal
direction.

2) Stability and feasibility of the walking gait
To evaluate the stability of the generated walking gait, we
analyzed the periodicity described by joint limit cycles. Fig-
ure 8 shows that the phase portrait for the actuated joints
while the robot is walking at a constant desired velocity.
The plot shows the convergence of the orbits to a periodic
limit cycle, demonstrating the stability of the walking gait.
Furthermore, the corresponding orbits for the left and right
are approximately symmetrical, which was expected by the
conditions enforced in the formulation of the RL framework.
The minor discrepancies, mostly noticed in hip roll joints, are
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FIGURE 7: Speed tracking performance of the proposed
controller in simulation with the robot Cassie. The controller
tracks the desired speed for different walking directions:
walking forward (vx > 0), backward (vx < 0), to the right
(vy > 0), to the left (vy < 0), diagonal (any combination of
the previous cases).
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FIGURE 8: Walking limit cycle of the learned policy when
tracking a longitudinal velocity vdx = 0.4 m/s, and lateral
velocity vdy = 0 m/s.

due to the swing leg regulator’s efforts to maintain the lateral
stability of the robot.

B. EXPERIMENTAL RESULTS ON DIGIT
1) Speed Tracking

We evaluate the speed tracking performance of the controller
in hardware by assigning a velocity profile with variations in
the desired velocities in both directions. The results presented
in Figure 9.a show that the controller keeps good tracking
of the desired velocities, especially for the velocity in the
longitudinal direction (v̄x). We observe that the tracking
error is higher for the lateral velocity (v̄y), which could
be caused by the continuous motion of the robot from left
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FIGURE 9: Speed tracking performance of the proposed con-
troller. The controller tracks the desired speed for different
cases: walking in place (vx = 0, vy = 0 ), forward (vx > 0),
backward (vx < 0), to the right (vy > 0), to the left (vy < 0),
and diagonal (any combination of the previous cases).

to right and vice-versa, asymmetries in the hardware joints
associated with the lateral movement, and drifting in the
IMU measurements used to estimate the linear velocity. In
addition, Figure 9.b shows that the controller keeps the torso
upright during the walking gait and accurately tracks the
desired heading angle. This tracking performance enables the
application of the proposed RL-based cascade motion policy
for navigation indoors and outdoors.

2) Stability and feasibility of the walking gait
Figure 10 shows the phase portrait of the actuated joints of
the robot’s leg while walking at a constant desired velocity.
Similar to the simulation results, the plot shows the con-
vergence of the orbits to a periodic limit cycle, empirically
demonstrating the stability of the walking gait. As expected,
the limit cycles of the joints are noisier than the ones obtained
in simulation, particularly for the joints that are being modi-
fied by the feedback regulator policy.

3) Robustness
We perform two tests to evaluate the robustness of the cas-
cade controller: i) robustness to external disturbances and
ii) robustness when walking on challenging terrain. For the
first test, external disturbances are applied to the robot’s
torso while walking forward (vx = 0.11m/s, vy = 0m/s).
Figure 11 shows the performance of the controller to keep
tracking of the desired walking speed, while Figure 12 shows
the limit walking cycle of some of the robot joints before,
during, and after the disturbance. These results show the
controller can recover effectively from disturbances while
keeping a good tracking performance of the desired walking
speed and maintaining the stability of the walking limit cycle.

For the second test, we set Digit to walk blindly on a
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FIGURE 10: Walking limit cycle of the learned policy when
tracking a longitudinal velocity vdx = 0.0 m/s, and lateral
velocity vdy = 0 m/s.

0 5 10 15 20 25 30 35

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

FIGURE 11: Disturbance rejection when external forces are
applied in the backward direction
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FIGURE 12: Disturbance rejection when adversarial forces
are applied in the forward and backward direction
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FIGURE 13: Digit walking on different terrains using the learned policy: concrete slopes (top-left), rubber surface (top-right),
grass (bottom-left), and pavement (bottom-right). The top-right tile plots also show the robustness of the policy against external
forces applied to the torso of the robot.

series of challenging irregular terrains. To test the robustness
of the controller on different slopes, we conducted rigorous
experiments on a treadmill varying the slope inclination from
0 to 11 degrees. In addition, we evaluate the controller’s per-
formance to real-world scenarios by conducting experiments
outdoors on different terrains, including concrete ground,
vinyl, pavement, grass, and slopes of different inclinations.
Figure 13 shows tile plots of the robot walking on some of
these terrains. More details about these experiments can be
seen in the accompanying video submission.

We evaluate the speed tracking performance of the con-
troller along all the different terrains. The results presented
in Figure 14 show the proposed controller structure is able
not only to keep stable walking but also to keep a good speed
tracking performance on every single terrain. This demon-
strates that our learned policy can be used with confidence
for navigation in real-world scenarios.

We denote that the same learned policy is used to navigate
the robot in all the terrains mentioned above, without the need
for additional training or tuning between different terrains.
It is important to denote that no disturbances or terrain
randomization were applied during the training. Therefore,
the robustness of the policy is the result of the enhanced
structure of the controller that allows the external and internal
loop to be updated at different rates. The inner loop (feedback
regulation) facilitates the feedback response of the controller
to external disturbances while the outer loop (NN-based
trajectory planning) keeps updating the reference trajectories
for different desired speeds at a lower rate.

VII. CONCLUSION
This paper presents a novel RL framework for the design of
a cascade motion policy that simultaneously addresses two
important problems in bipedal locomotion: trajectory plan-
ning and feedback regulation. By incorporating the physical
insights of dynamic walking such as symmetry motion, in-
variance through impact condition, and heuristic regulations
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FIGURE 14: Speed tracking performance of the controller
while walking blindly on different challenging terrains.

into the learning process, we provide a complete and effective
solution for the design of feedback controllers that realize
stable and robust walking gaits without any prior knowledge
of reference trajectories. The method relies on a small-size
network with reduced state and action spaces, resulting in
improved sample efficiency and reduced training time. The
proposed method is tested in simulation with two bipedal
robots Cassie and Digit, and successful sim-to-real transfer
of the learned policy is demonstrated on Digit with minimal
tuning. Extensive hardware experiments show the learned
policy can track desired walking speeds in any direction
while maintaining stable walking gaits. Moreover, the policy
is robust to external disturbances and challenging terrains,
including rubber ground, pavement, grass, and slopes.
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