
Data-Driven Latent Space Representation for Robust Bipedal
Locomotion Learning

Guillermo A. Castillo1, Bowen Weng2, Wei Zhang3, and Ayonga Hereid4

Abstract— This paper presents a novel framework for learn-
ing robust bipedal walking by combining a data-driven state
representation with a Reinforcement Learning (RL) based
locomotion policy. The framework utilizes an autoencoder to
learn a low-dimensional latent space that captures the complex
dynamics of bipedal locomotion from existing locomotion data.
This reduced dimensional state representation is then used as
states for training a robust RL-based gait policy, eliminating the
need for heuristic state selections or the use of template models
for gait planning. The results demonstrate that the learned
latent variables are disentangled and directly correspond to
different gaits or speeds, such as moving forward, backward,
or walking in place. Compared to traditional template model-
based approaches, our framework exhibits superior perfor-
mance and robustness in simulation. The trained policy effec-
tively tracks a wide range of walking speeds and demonstrates
good generalization capabilities to unseen scenarios.

I. INTRODUCTION

Bipedal robots have long been a subject of fascination and
research within the field of robotics due to their potential
for versatile and agile locomotion in complex environments,
closely mimicking the morphology and capabilities of hu-
mans. However, despite significant advancements in control
techniques and hardware, developing a robust and efficient
bipedal locomotion control system remains a challenge,
largely due to the high dimensionality, underactuation, and
highly nonlinear and hybrid dynamics of bipedal locomotion.

Conventional methods for bipedal walking often involve
solving optimization problems using the robot’s full-order [1]
or reduced-order model [2], [3] to find feasible trajectories
that enable stable walking gaits. The full-order model cap-
tures all the complexities and details of the robot’s dynamics,
but it can be computationally demanding and not suitable
for real-time control [4]. On the other hand, reduced-order
template models (such as linear inverted pendulum (LIP) and
its variants [2], [5], [6]) simplify the dynamics of the system,
making it easier to plan trajectories for the robot’s center of
mass and end-effector. However, these reduced-order models
often require strict constraints to account for the mismatch
between the reduced and full-order states of the robot.

This work was supported in part by the National Science Foundation
under grant FRR-21441568.

1Electrical and Computer Engineering, Ohio State University, Columbus,
OH, USA; castillomartinez.2@osu.edu.

2Department of Computer Science, Iowa State University, Ames, IA,
USA; bweng@iastate.edu.

3SUSTech Institute of Robotics, Southern University of Science and
Technology (SUSTech), China; zhangw3@sustech.edu.cn.

4Mechanical and Aerospace Engineering, Ohio State University, Colum-
bus, OH, USA. hereid.1@osu.edu.

The evolution of modern control theory has seen an
infusion of machine learning and RL techniques, particu-
larly with the growing abundance and accessibility of data.
These data-driven approaches offer novel ways to address
challenges in control design, often sidestepping traditional,
more rigid, and computationally expensive methods. There
is a growing interest in using reinforcement learning-based
approaches that allow exploiting data from simulation to train
controllers in a model-free fashion [7]–[10]. However, simi-
lar to model-based techniques, they are highly dependent on
the quality of the state representation provided to the learning
algorithm. As an alternative, more complex frameworks have
been proposed to combine learning algorithms with model-
based controllers. In [11], an HZD-based approach is used to
learn a policy that satisfies Control Barrier Functions (CBF)
defined on the reduced-order dynamics. In our previous
work [12], [13], a cascade structure is implemented to
compensate the learned trajectories with feedback regulators
to increase the robustness of the walking gait. A hierarchical
structure that combines a template-based RL policy with a
model-based low-level controller is proposed in [14].

An effective state representation that can accurately cap-
ture the complex dynamics of the whole system can signifi-
cantly enhance the learning process, enabling more efficient
learning and better transferability of control strategies. Un-
supervised learning, dimensionality reduction, and represen-
tation learning methods can be employed to extract relevant
features from high-dimensional sensory data, enabling the
development of more efficient and interpretable state repre-
sentations [15], [16]. Dai et al. [17] learn the step-to-step
residual dynamics via an adaptive control approach, which
is then used to design a foot-stepping controller for a bipedal
robot in simulation. More complex learned residual dynamic
models are also combined with Model Predictive Control
(MPC) for agile systems [18]. These techniques require
previous knowledge of the dynamics of the system’s model.
Several works also have exploited latent representations
through reinforcement learning for locomotion. Peng et al.
[19] combine techniques from adversarial imitation learning
and unsupervised reinforcement learning to develop skill
embeddings that produce locomotion behaviors. Starke et al.
[20] extract a multi-dimensional phase space from the full-
order state motion data, which effectively clusters animations
and produces a manifold with better temporal and spatial
alignment. However, these are end-to-end frameworks, which
makes it difficult to establish a relationship between the
latent space and the control actions of the policy. Moreover,
these approaches have been mostly used to control animated

2024 IEEE International Conference on Robotics and Automation (ICRA)
May 13-17, 2024. Yokohama, Japan

979-8-3503-8457-4/24/$31.00 ©2024 IEEE 1172

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n
(I

C
R

A
) |

 9
79

-8
-3

50
3-

84
57

-4
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

R
A

57
14

7.
20

24
.1

06
10

97
8

Authorized licensed use limited to: The Ohio State University. Downloaded on November 04,2024 at 20:06:58 UTC from IEEE Xplore. Restrictions apply.

NN Planner Task space
trajectory generation

Encoder Decoder

Task space
controller

Latent Space
Gait dataset Reconstructed data

Pre-training process

RL training

Fig. 1: An overview of the overall structure and flow of the proposed learning-based framework. In the pre-training phase,
the autoencoder learns a latent space that captures the dynamics of the full-order system. During the RL training, the policy
maps the latent representation to a set of task space actions that are translated into task space trajectories. Finally, a whole-
body task space feedback controller computes the motor torque to track the desired task-space trajectories.

characters in simulation, and there are no studies focused on
implementation for actual bipedal robots.

In this paper, we propose a novel data-driven framework
for bipedal walking that combines a learned low dimensional
state representation of bipedal locomotion with a robust gait
planner using RL, as depicted in Fig. 1. Our framework uses
an autoencoder to extract an effective reduced-dimensional
state representation of the full-order system dynamics. We
then integrate this reduced-order latent space with reinforce-
ment learning and a task space feedback controller to train
robust locomotion policies. This paper makes two key con-
tributions. First, we demonstrate that the complex dynamics
of bipedal robots can be effectively captured using a low-
dimensional learned latent space. This allows for a more
compact representation of the system’s behavior. Second, we
show that the learned latent variables can be leveraged to
design a robust locomotion policy using RL. By bridging
the gap between state representation learning and learning-
based control policies, this work enables leveraging existing
locomotion data to develop more effective and adaptable
frameworks for versatile and robust bipedal locomotion.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Hybrid System Model of Bipedal Locomotion

The bipedal locomotion problem can be characterized
as a hybrid system determined by a collection of phases
of continuous dynamics with discrete events between the
transitions of the continuous phases. Formally, the hybrid

system model for biped locomotion can be defined as [21]:

Σ :

{
ẋ = f(x) + g(x)u+ ω(x, u) x ∈ X \ H
x+ = ∆(x−) x− ∈ H,

(1)

where f(·) and g(·) are vector fields, x = (q, q̇) ∈ X ⊆
Rn represents the robot states with q being the vector of
generalized coordinates, u ∈ U ⊆ Rm is a vector of actuator
inputs, and ω ∈ Ω ⊆ Rw captures external disturbances and
model uncertainties. The reset map ∆ : H → X denotes
the mapping between the post-impact states x+ immediately
after impacts and the pre-impact states x− right before
impacts, and H is the switching surface corresponding to
swing foot impacts.

For a typical humanoid robot with high degrees of freedom
(DoF), the dimension of the robot states x is too large
to be effectively used for feedback motion planning. Low-
dimensional models have become a powerful tool for motion
planning of bipedal locomotion, given their potential to
characterize the dynamics of bipedal walking into simple
linear or nonlinear models. However, existing reduced-order
template models, such as the Linear Inverted Pendulum
(LIP), make assumptions that limit the full capabilities of
walking robots. These assumptions include a constant center
of mass (CoM) height and zero angular momentum about the
CoM during the walking gait. While previous research has
explored alternative template models for bipedal locomotion,
this study aims to investigate whether available locomo-
tion data can be utilized to identify an effective reduced-
dimensional state representation of bipedal locomotion for
motion planning purposes.

1173

Authorized licensed use limited to: The Ohio State University. Downloaded on November 04,2024 at 20:06:58 UTC from IEEE Xplore. Restrictions apply.

B. Data-driven Low Dimensional Latent Space

Autoencoders are a great tool to harness high dimensional
gait data to extract a reduced dimensional latent represen-
tation of the system that captures the essence of the full-
order robot dynamics. An autoencoder works by compressing
the input data into a low-dimensional latent space through a
feature-extracting function in a specific parameterized closed
form, such as neural networks [16]. This function, called
encoder is determined by

z = h(x, θe), (2)

where z is the latent variable or representation encoded from
the input x, and θe is the vector of parameters for the encoder
neural network. Another closed-form parameterized function
called the decoder, maps from the latent space back to the
full-order state. This function is defined by

x̂ = d(z, θd), (3)

where z is the encoded latent variable, x̂ is the reconstruction
of the original input data x, and θd is the vector of parameters
for the decoder neural network.

The strength of autoencoders lies in their ability to pre-
serve most of the crucial information from the original data
in the latent representation, even though it is of much lower
dimensionality. This is ensured by training the autoencoder
to minimize the reconstruction loss L, which measures the
error between the original data and its reconstruction from
the latent space. In summary, autoencoder training consists of
finding a value of the parameter vectors θe, θd that minimize
the reconstruction error:

JAE(θe, θd) =
∑

x(i)∈X

L
(
x(i), d

(
h
(
x(i), θe

)
, θd

))
, (4)

where x(i) is a training sample containing the vectors of
position and velocity of the generalized coordinates, and X
is the training set containing all the data samples. h and
d are the encoding and decoding functions introduced in (2)
and (3). Once the autoencoder has been trained, the resulting
latent representation can then be utilized as part of the state
for the high-level planner policy, offering a compact yet
expressive state space for learning and control.

III. METHOD

The proposed data-driven framework is shown in Fig. 1.
The gait policy will be learned via RL by utilizing an
effective latent representation of the full-order robot’s dy-
namics to a set of task space commands that generate desired
trajectories for the robot. Then, a whole body task space
controller (TSC) from [14] is employed to accurately track
the desired trajectories to realize stable locomotion.

The proposed framework is tested with the robot Digit,
which is a 3D fully actuated bipedal robot with 30 DoF and
20 actuated joints built by the company Agility Robotics.
Each leg has six actuated joints corresponding to the motors
located on the robot’s hip, knee, and ankle and three passive
joints corresponding to the robot’s tarsus, shin spring and

heel spring joints. In addition, it has four actuated joints per
arm corresponding to the shoulder and elbow joints. Since the
spring joints are very stiff, we considered them as fixed joints
in this work. Therefore, the vector of generalized coordinates
for Digit is defined by

q = (p, qϕ, qj), (5)

where p = (px, py, pz) is the position of the robot’s base,
qϕ = (qx, qy, qz, qw) is the quaternion representation of the
robot’s orientation, and qj = (q1, . . . , qnj

) is the vector of the
robot’s joints with nj = 24. Therefore, q ∈ SE(3)×R24 ⊂
R31, q̇ ∈ R30, and x ∈ R61.

A. Reduced Dimensional Latent Space Representation

To collect the locomotion dataset to train the autoencoder,
we use the hierarchical controller proposed in [14]. The
dataset is collected by performing walking gaits at various
velocities. Specifically, the velocities vx and vy are varied
within the ranges of [−0.5, 1.0] m/s and [−0.2, 0.2] m/s,
respectively, with a step size of 0.1 m/s, resulting in a total of
16 different walking gaits. Each walking gait has a duration
of 10 seconds, with the data being collected at a frequency
of 50 Hz. Therefore, the complete locomotion dataset X
consists of 40, 000 samples of the robot’s full-order states,
i.e., X = {x(i)|i ∈ [1, 40000]}.
Remark: Note that any locomotion controller could be
used to collect the gait data. For instance, many commercial
robots are equipped with proprietary controllers that could
be used to collect this data even though they are a black box
from the user’s perspective. Moreover, we do not make any
assumptions about the distribution of the gait data.

In this work, we use an encoder parameterized by a
fully connected neural network with three hidden layers of
128, 64, and 32 units, respectively, and ReLU activation
functions. The input of the encoder is the robot’s full order
states. However, since the inputs of the encoder need to be
bounded, the absolute base position of the robot cannot be
directly used. This is because the absolute position can grow
unbounded as the robot moves in the sagittal or frontal plane.
To address this, the base position and orientation of the
robot are transformed from the world frame to the stance
foot frame, which ensures that the inputs to the encoder
remain bounded and allows for effective learning of the latent
representation of the robot’s dynamics.

The autoencoder is trained using Adam optimizer [22]
with a learning rate of 0.001 and a batch size B of 128.
The reconstruction loss is computed with the mean squared
error (MSE) between the original values of the gait dataset
x(i) ∈ X and their reconstructed values x̂(i) ∈ X̂, given as

L =
1

B

(
x(i) − x̂(i)

)2

. (6)

The autoencoder is trained for 400 episodes in a 12-core CPU
machine with an NVIDIA RTX 2080 GPU. The training
takes about 10 minutes using the described locomotion
dataset X and PyTorch.

The selection of the dimension of the latent variable z
involves a trade-off. On one hand, a smaller dimension is

1174

Authorized licensed use limited to: The Ohio State University. Downloaded on November 04,2024 at 20:06:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Reconstruction of the robot’s state with different
dimensions N for the latent variable z. The plots show the
position (left column) and velocity (right column) for the
robot’s base x coordinate (top), robot’s base y coordinate
(middle), and left knee joint (bottom), respectively.

desirable as it reduces the number of inputs for the RL
policy. However, the dimension should also be large enough
for the autoencoder to accurately reconstruct the full-order
state of the system. In our study, we investigated this trade-
off and discovered that even for a complex system like
a humanoid robot, a latent variable dimension of N =
2 is sufficient to capture the dynamics of the full-order
systems effectively. This finding is supported by the results
shown in Fig. 2, where increasing the dimension of the
latent variable does not lead to significant improvements
in reconstruction quality. Even in cases where performance
is slightly degraded, the reconstructed variable still follows
the same pattern as the original state. Interestingly, our
findings align with those reported in [20], where the authors
demonstrated that periodic movements in bipedal locomotion
can be represented using fewer than five phase variables. This
similarity may be attributed to the symmetric and periodic
nature of bipedal walking.

B. RL-based Gait Policy using Learned Latent Variables

Given the reduced dimensional latent space, we train an
RL policy for robust locomotion based on our previous work
in [14]. The states of the policy are defined as

s = (z, ev̄, v
d, ak−1), (7)

where z = (z1, . . . , zN) ∈ RN is the encoded latent state,
ev̄ = (ev̄x

, ev̄y) is the error between the average velocity,
v̄ = (v̄x, v̄y), and the desired velocity, vd = (vdx, v

d
y), of the

robot, and ak−1 is the last action of the planner policy.
The selection of the action space in this work is designed

to exploit the natural nonlinear dynamics of the biped robot
and enhance the robustness of the policy under various
challenging scenarios. Since Digit is a fully actuated system

Fig. 3: Visualization of the policy actions and the trajectories
generated for the task space controller. Additionally, we keep
the torso straight up and the base at a constant height.

during the single support phase, we include the instantaneous
base velocity as part of the action a. We choose to con-
trol instantaneous velocity over the base position because
controlling the position during the stance phase through the
TSC is more challenging than velocities in practical hardware
implementation. This is caused by the noisy and inaccurate
estimation of the position and the limited amount of torque
in the robot’s ankles. Moreover, sudden motions of the foot
position due to terrain irregularities could produce big errors
in the base position tracking that could result in aggressive
control maneuvers. Therefore, controlling the instantaneous
velocity is a less aggressive strategy for the TSC and provides
some degree of damping to the ankle motion that helps with
the stability of the walking gait under irregular terrains. Thus
the action a ∈ A of the policy for Digit is chosen to be:

a = (pxsw,T , p
y
sw,T , v

d
x, v

d
y), (8)

which corresponds to the landing position of the swing
foot in x and y coordinates with respect to the robot’s base
and an offset to the instantaneous velocity of the robot’s
base in x and y coordinates, as illustrated in Fig. 3. The
trajectory generation module transforms the policy action
a into smooth task-space trajectories for the robot’s base
and end-effectors. Specifically, the trajectory for the relative
swing foot positions, pxsw and pysw, are generated using a
minimum jerk trajectory connecting initial foot positions
with target foot positions from the policy action. In particular,
the initial foot positions will be computed at every touch-
down event and kept constant throughout the current step.

The neural network (NN) chosen to parameterize the gait
policy is a feed-forward network with two hidden layers,
each layer with 128 units. The hidden layers use the ReLU
activation function, and the output layer is bounded by the
Tanh activation function and a scaling factor to constrain
the maximum value of the policy commands within the
feasible physical limits of the robot hardware. Finally, we
implemented a model-based TSC controller following the
structure to track the task space trajectories, as described in
our previous work [14].

1175

Authorized licensed use limited to: The Ohio State University. Downloaded on November 04,2024 at 20:06:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Two-dimensional principal component analysis (PCA)
of the learned latent manifolds at different walking speeds.

C. Learning Procedure of the RL Gait Policy

To train the RL policy, we use the Proximal Policy
Optimization algorithm [23] with input normalization, fixed
covariance, and parallel experience collection. We follow the
algorithm implementation described in [8].

For each episode during the RL training, the initial state of
the robot is set randomly from a normal distribution about
an initial pose corresponding to the robot standing in the
double support phase. An episode will be terminated early
if the torso pitch and roll angles exceed 1 rad or the base
height falls below 0.8 m. The reward function adopted in this
work is designed to (1) keep track of desired velocities, (2)
minimize the angular momentum around the center of mass,
denoted as LCoM, and (3) reduce the variation of the policy
actions between each iteration. More specifically,

r = wT [rv, rLCoM , ra]
T , (9)

with

rvx = exp (−
∥∥v̄ − vd

∥∥2), (10)

rLCoM = exp (−∥LCoM∥2), (11)

ra = exp (−∥ak − ak−1∥2), (12)

and the weights are chosen as wT = [0.6, 0.3, 0.1].
One iteration step of the policy corresponds to the in-

teraction of the learning agent with the environment. The
RL policy takes the reduced order state s and computes an
action a that is converted in desired task-space trajectories
yd at the time tk. The reference trajectories are then sent to
the task-space controller, which sends torque commands to
the robot. This workflow is depicted in Fig. 1. The feedback
control loop runs at a frequency of 1 kHz, while the high-
level planner policy runs at 50 Hz. The maximum length of
each episode is 600 iteration steps, which corresponds to 12
seconds of simulated time.

Fig. 5: Comparison of velocity tracking performance of the
learned policy with different dimensions of the latent space
N with a model-based ALIP planner described in [5].

IV. SIMULATION RESULTS

In this section, we show the performance of the learned
planner policy under different testing scenarios with the
bipedal robot Digit. Moreover, we analyze the latent rep-
resentation generated during the testing of the RL policy.

A. Latent State Representation

To visualize the learned latent manifolds, we applied prin-
cipal component analysis (PCA) to reduce the dimensionality
of the latent space to 2D. Fig. 4 shows the 2D representation
of the latent space for dimensions N = 2, N = 4, and N =
8. The data used for visualization correspond to the robot
Digit walking with the learned RL policy within the range
of vdx ∈ [−0.75, 1.4] m/s. In all three cases, the latent space
exhibits a well-distributed and disentangled representation
of the data, with each walking speed corresponding to a
specific area in the 2D plane. For comparison, Fig. 4 also
includes the 2D PCA visualization of the full-order state
of the robot. It is evident that data points for different
speeds overlap with no clear structure. This highlights that
the latent space, even with a very low dimensionality N ,
effectively captures the distribution of the data in the full-
order system. This demonstrates the potential of exploiting
the latent representation for control purposes.

B. Tracking Performance of Different Velocity Profiles

We evaluated the performance of the learned gait policies
with latent space dimensions with N = 2, N = 4, and
N = 8 in tracking a velocity profile in different directions
using the Digit robot. As shown in Fig. 5, the policy success-
fully tracks walking speeds in the range vdx ∈ [−0.75, 1.4]
m/s, even with aggressive changes in the velocity profile.
Importantly, the data collected to train the autoencoder was
within the range of vdx ∈ [−0.5, 1.0]. These results show the
effectivity of the learned latent states to control the walking
velocity even with a low dimension N . Furthermore, the
results demonstrate that the latent representation captures the
dynamic nature of the walking gait and can be generalized
to scenarios outside the training distribution. Additional tests
about this aspect are presented in Sec. IV-C.

1176

Authorized licensed use limited to: The Ohio State University. Downloaded on November 04,2024 at 20:06:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Comparison of the desired swing foot landing posi-
tions (the policy action) from different latent space dimen-
sions N and the ALIP planner.

For comparison, Fig. 5 also shows the speed-tracking per-
formance of a model-based ALIP planner based on the design
in [5]. Our policy outperforms the model-based baseline
in terms of velocity tracking and offers a wider range of
admissible walking speeds. The ALIP-based planner fails to
maintain a stable walking gait for speeds higher than 1.2 m/s.
In addition, Fig. 6 illustrates the correspondence between the
walking speeds and control actions of the RL policies with
different Ns and the ALIP planner. Specifically, we focus on
the swing foot landing position with respect to the robot’s
base pswx,T when the robot is walking at 0.7 and 1.0 m/s.
Interestingly, the actions of the RL policy exhibit similar
patterns across different latent space dimensions N . This
finding aligns with the results presented in Sec. IV-A, where
we showed that even a small N is sufficient to characterize
the dynamics of the full-order system fully. When provided
with a larger latent space dimension, the policy learns to
disregard less important states in the latent space, resulting
in similar policy actions for different N values.

Furthermore, the actions of the latent space-based policies
exhibit similar patterns to those of the ALIP planner. This
is intriguing because the latent space used by the RL policy
does not have a direct physical interpretation. Nevertheless,
the RL policy learns to behave in a manner similar to
the template model-based planner. These behaviors are not
enforced during training, suggesting that the latent space
naturally captures the dynamics of both the template model
and the full-order system.

C. Policy Generalization to Out-of-Distribution Scenarios

In addition to evaluating the policy’s performance on
data it was trained on, we also assess its ability to handle
out-of-distribution scenarios. To do this, we conduct tests
where the policy is instructed to maintain a constant speed
while the height of the base is varied. It is important to
note that the training of the autoencoder and the RL policy
did not include any data with varying base heights, as the
locomotion data used for training latent spaces was collected
with a fixed base height of 1 m. Nevertheless, as depicted
in Fig. 7, the policy demonstrates successful tracking of the
desired walking speed regardless of the different base heights
commanded. An interesting future work direction may be the
exploration of the robust generalization of the latent space to

Fig. 7: Generalization of the latent space and trained policy
to out-of-distribution data.

Fig. 8: Robustness test to external disturbances.

generate transitions between different locomotion tasks such
as walking, jogging, sitting, and jumping.

Furthermore, we conducted tests to evaluate the policy’s
robustness against external disturbances in the forward and
backward directions. The disturbances ranged from −100 N
to 60 N, with durations ranging from 0.1 s to 1.5 s. As illus-
trated in Fig. 8, the policy demonstrated effective reactions to
the different disturbances, successfully maintaining stability
and tracking the desired walking speeds without falling.

V. CONCLUSION

In this work, we present a novel data-driven learning
framework to realize robust bipedal locomotion. The design
of the high-level RL gait policy takes data-driven reduced
dimensional latent variables as input states and generates a
set of task space commands, including the robot’s step length
with respect to the base and instantaneous velocity offset of
the robot’s base. The latent representation of the full-order
state is obtained using an autoencoder trained with super-
vised learning from locomotion data collected with existing
locomotion controllers. Our work shows that the learned
latent representation manifold has a disentangled structure
that is directly correlated with the speed of the walking
robot. The insightful choice of the RL state and action spaces
results in a compact policy that learns effective strategies
for robust and dynamic locomotion in simulation. Future
work will focus on implementing and validating the proposed
framework on Digit, further demonstrating its effectiveness
and adaptability for real-world bipedal locomotion.

1177

Authorized licensed use limited to: The Ohio State University. Downloaded on November 04,2024 at 20:06:58 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. D. Ames, “Human-inspired control of bipedal robots via control
lyapunov functions and quadratic programs,” in Proceedings of the
16th international conference on Hybrid systems: computation and
control, C. Belta and F. Ivancic, Eds., ACM. ACM, 2013, pp. 31–32.

[2] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in IEEE International Conference on
Robotics and Automation, vol. 2, Sept. 2003, pp. 1620–1626.

[3] P. M. Wensing and D. E. Orin, “High-speed humanoid running through
control with a 3D-SLIP model,” IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 5134–5140, Nov. 2013.

[4] A. Hereid, C. M. Hubicki, E. A. Cousineau, and A. D. Ames,
“Dynamic humanoid locomotion: a scalable formulation for HZD gait
optimization,” IEEE Transactions on Robotics, vol. 34, no. 2, pp. 370–
387, Apr. 2018.

[5] Y. Gong and J. W. Grizzle, “Zero Dynamics, Pendulum Models, and
Angular Momentum in Feedback Control of Bipedal Locomotion,”
Journal of Dynamic Systems, Measurement, and Control, vol. 144,
no. 12, p. 121006, 10 2022.

[6] X. Xiong, J. Reher, and A. D. Ames, “Global position control on
underactuated bipedal robots: Step-to-step dynamics approximation for
step planning,” in 2021 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2021, pp. 2825–2831.

[7] Z. Xie, G. Berseth, P. Clary, J. Hurst, and M. van de Panne, “Feedback
control for cassie with deep reinforcement learning,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 1241–1246.

[8] J. Siekmann, S. Valluri, J. Dao, L. Bermillo, H. Duan, A. Fern, and
J. Hurst, “Learning memory-based control for human-scale bipedal
locomotion,” in Robotics science and systems, 2020.

[9] Z. Li, X. Cheng, X. B. Peng, P. Abbeel, S. Levine, G. Berseth,
and K. Sreenath, “Reinforcement learning for robust parameterized
locomotion control of bipedal robots,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA), 2021.

[10] K. Green, Y. Godse, J. Dao, R. L. Hatton, A. Fern, and J. Hurst,
“Learning spring mass locomotion: Guiding policies with a reduced-
order model,” IEEE Robotics and Automation Letters, vol. 6, no. 2,
pp. 3926–3932, 2021.

[11] I. D. J. Rodriguez, N. Csomay-Shanklin, Y. Yue, and A. D. Ames,
“Neural gaits: Learning bipedal locomotion via control barrier func-
tions and zero dynamics policies,” in Learning for Dynamics and
Control Conference. PMLR, 2022, pp. 1060–1072.

[12] G. A. Castillo, B. Weng, W. Zhang, and A. Hereid, “Robust feed-
back motion policy design using reinforcement learning on a 3d
digit bipedal robot,” in 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2021, pp. 5136–5143.

[13] G. Castillo, B. Weng, W. Zhang, and A. Hereid, “Reinforcement
learning-based cascade motion policy design for robust 3d bipedal
locomotion,” IEEE Access, vol. 10, pp. 20 135–20 148, 2022.

[14] G. A. Castillo, B. Weng, S. Yang, W. Zhang, and A. Hereid, “Template
model inspired task space learning for robust bipedal locomotion,” in
2023 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2023.

[15] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
in 2nd International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Pro-
ceedings, Y. Bengio and Y. LeCun, Eds., 2014.

[16] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[17] M. Dai, X. Xiong, and A. D. Ames, “Data-driven adaptation for
robust bipedal locomotion with step-to-step dynamics,” arXiv preprint
arXiv:2209.08458, 2023.

[18] T. Salzmann, E. Kaufmann, J. Arrizabalaga, M. Pavone, D. Scara-
muzza, and M. Ryll, “Real-time neural mpc: Deep learning model
predictive control for quadrotors and agile robotic platforms,” IEEE
Robotics and Automation Letters, vol. 8, no. 4, pp. 2397–2404, 2023.

[19] X. B. Peng, Y. Guo, L. Halper, S. Levine, and S. Fidler, “ASE: large-
scale reusable adversarial skill embeddings for physically simulated
characters,” ACM Trans. Graph., vol. 41, no. 4, pp. 94:1–94:17, 2022.

[20] S. Starke, I. Mason, and T. Komura, “Deepphase: Periodic autoen-
coders for learning motion phase manifolds,” ACM Trans. Graph.,
vol. 41, no. 4, jul 2022.

[21] J. W. Grizzle, C. Chevallereau, R. W. Sinnet, and A. D. Ames,
“Models, feedback control, and open problems of 3D bipedal robotic
walking,” Automatica, vol. 50, no. 8, pp. 1955–1988, 2014.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2015.

[23] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

1178

Authorized licensed use limited to: The Ohio State University. Downloaded on November 04,2024 at 20:06:58 UTC from IEEE Xplore. Restrictions apply.

