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Abstract—Correct-by-construction techniques, such as control 

barrier functions (CBFs), can be used to guarantee closed-loop 

safety by acting as a supervisor of an existing or legacy controller. 

However, supervisory-control intervention typically compromises 

the performance of the closed-loop system. On the other hand, 

machine learning has been used to synthesize controllers that 

inherit good properties from a training dataset, though safety is 

typically not guaranteed due to the difficulty of analyzing the 

associated neural network. In this paper, supervised learning is 

combined with CBFs to synthesize controllers that enjoy good 

performance with provable safety. A training set is generated by 

trajectory optimization that incorporates the CBF constraint for 

an interesting range of initial conditions of the truck model. A 

control policy is obtained via supervised learning that maps a 

feature representing the initial conditions to a parameterized 

desired trajectory. The learning-based controller is used as the 

performance controller and a CBF-based supervisory controller 

guarantees safety. A case study of lane keeping for articulated 

trucks shows that the controller trained by supervised learning 

inherits the good performance of the training set and rarely 

requires intervention by the CBF supervisor. 

Index Terms—Control Barrier Function, Supervised Learning, 

trajectory optimization 

Nomenclature 

denotes the set of real number, n denotes the n-

dimensional Euclidean space,  x denotes the space of all 

polynomials of x ,  x  denotes the cone of SOS polynomials, 

a subset of  x . For a scalar function : nh  of nx

and a vector field : n nf  , the Lie derivative is defined as 

   f

dh
h x f x

dx
 , which is a scalar function of x , and 

1n n

f f fh h , with 
0

f h h . nC denotes sets of functions 

with continuous n-th derivatives. 

I. INTRODUCTION 

ORRECT-by-construction control synthesis has been a 

promising direction of research that brings formal safety 

guarantees to controller design. In particular, Control 

Barrier Functions (CBF)  can be overlaid on existing controllers 

so as to impose closed-loop safety in a plug-and-play fashion 

[1, 2]. The key idea in the design of a CBF is to compute a 

forward invariant set that contains the safe set and excludes the 

danger set. The CBF can then be implemented in a supervisory 
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control structure to guarantee safety without redesigning the 

performance controller, hereafter called the ‘student’ controller 

because it is being ‘supervised’ by the CBF.  

 

Fig. 1. Block diagram of Control Carrier Function (CBF) 

supervising a “student” controller.  

As shown in Fig. 1, 0u denotes the control input from the student 

controller, which can be designed with any existing method, 

and u denotes the input signal after the intervention of the 

supervisory controller. If 0u respects the safety constraint, then

0u u ; otherwise a ‘minimal intervention’ is applied. 

Depending on the form of the barrier function, the 

‘intervention’ may be computed through quadratic 

programming [1, 3], mixed integer programming [4], or in other 

forms.  

While safety is assured independently of the choice of 

student controller, if the student controller is not properly 

designed, or is designed in a way that is not compatible with the 

CBF, the CBF may be triggered frequently, leading to 

undesirable closed-loop performance. In [5], when working 

with a student controller for  Adaptive Cruise Control (ACC) 

that is not properly designed, the CBF causes spikes on the input 

when activated. In [4], when the student controller is designed 

without considering obstacle avoidance, the CBF has to 

intervene frequently and severely to ensure obstacle avoidance.  

These examples, on one hand, demonstrate the power of a CBF 

to provide safety guarantees, but they also show there is room 

for improvement. If the student controller is designed in a way 

that takes the supervisor into account, the interventions can be 

reduced and the overall system’s performance can be improved.  

On the other hand, machine learning has been used 

extensively in dynamic control. Supervised learning has been 

used to learn a control policy with structure[6, 7], deep learning 

recently was used to generate end-to-end Lane Keeping (LK) 

policy, i.e., a mapping directly from the camera pixels to the 

steering input [8], and reinforcement learning can be used to 

generate a control policy in an ‘explore and evaluate’ manner 
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[9-11]. However, one major deficit of machine learning is its 

extreme difficulty for analysis. The number of parameters 

contained in a neural network can easily reach several thousand, 

even millions, which makes it practically impossible to analyze. 

Therefore, the safety of a learning-based controller should rely 

on other tools, such as reachable sets and barrier functions. In 

this sense, machine learning and CBFs complement one other.  

Existing methods that combine learning with safety 

guarantee include reachable-set-based learning scheme that can 

guarantee safety for online learning of a control policy [12, 13], 

a barrier-function-based online learning scheme [14], and 

Gaussian process learning [15]. Unlike approaches that aim at 

guaranteeing safety with learning, such as [12-15], the method 

proposed in this paper separates safety from the performance. 

The safety guarantee is provided by a CBF, and supervised 

learning is used to improve the performance considering the 

influence of the CBF as a supervisor.  

The method we propose is to perform trajectory optimization 

offline, generate a library consisting of trajectories with good 

properties, namely, stabilizing an equilibrium, attenuating 

disturbances, and satisfying a CBF condition. We then use 

supervised learning to design a student controller that inherits 

the properties of the trajectory library. The CBF is implemented  

as a supervisor of the learning-based controller, as shown in 

Fig. 2. Since the CBF condition is enforced in the training set, 

an intervention by the supervisor is rarely triggered. It should 

be emphasized that the safety is still guaranteed by the CBF, the 

supervised learning only aims to improve performance.  

 

Fig. 2. Structure of the proposed supervisory control  

The main contributions of this paper are the following two 

points. First, we propose a supervised learning based method to 

design a student controller that takes the CBF condition into 

account, is applicable to a large region of initial conditions, and 

rarely triggers an intervention from the supervisory controller. 

With supervised learning, the design of a safe student controller 

is transformed into the design of safe trajectories, which is 

much easier, as conceptually shown in Fig. 3.  

 

Fig. 3. Learning based trajectory generator  

Second, we provide a stability and set invariance analysis of 

the learning-based controller under the framework of 

continuous hold (CH) feedback control. Applying the proposed 

method, we are able to provide a safety guarantee for Lane 

Keeping control (LK) of an articulated truck, while achieving 

good ride comfort. 

The remainder of the paper is structured as follows.  We first 

introduce the truck model and the feedback linearization 

structure in Section II. Then we present the Sum of Squares 

(SOS) approach for the synthesis of a CBF in Section III. Then 

we show the trajectory optimization process with direct 

collocation that incorporates the CBF condition in Section IV.  

The obtained trajectory library is then used to train a neural 

network that acts as a trajectory generator, as presented in 

Section IV. The trajectory generator is implemented in a 

Continuous Hold control structure with CBF as the supervisor 

on top of it, which is presented in Section V. Finally, we present 

the LK problem as an example in Section VI and conclude in 

Section VII. 

II. DYNAMIC MODEL AND VIRTUAL CONSTRAINT 

In this paper, we consider a control affine nonlinear model: 
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where x , u , 1d , and 2d represent the state, input, measured 

disturbance, and unmeasured disturbances, respectively. 

Remark 1: The unmeasured disturbance 2d will be countered 

with the feedback control. Therefore, it is assumed that 2 0d 

for the following analysis of feedback linearization. 

A. Model assumptions 

The results in this paper are developed under four key 

assumptions: 

A-1: It is assumed that 1d changes slowly comparing to the 

system dynamics. Therefore, 1d is treated as constant in the 

following analysis. 

A-2: There exists an output  z h x for x within an open 

subset n , such that for all 11d  , z has relative degree
 , where the relative degree is defined as the integer such that 

x   ,  
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where 

      1 1df x f x g x d  . (3) 

A-3: It is assumed that when 2 0d  , for all 1 1d  , there exists 

a unique  1u d  that maintains a unique equilibrium point 

n

ex  with   0eh x  , denoted as  1e xx d :  
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Then from feedback linearization, there exists a state 

transformation: 
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where T is a bijective diffeomorphism over , and the 

transformation satisfies  1 0
T

g x
x





. Therefore, the dynamics 

of the “hidden” states is represented as  

  ,    . (6) 

In particular,  ,0   is the zero dynamics of the system 

with output z , and there exists a smooth surface   

defined by  : 0x   ∣ , which is the zero dynamics 

manifold.  

A-4: We assume that the zero dynamics of the system under 

output z  is exponentially stable within .  

Then by Theorem 11.2.3 in [16], the following feedback 

linearization controller constructed from z and its derivatives 

stabilizes the equilibrium ex : 
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where  ik is a set of exponentially stabilizing gains in the 

sense that the following characteristic equation 

 
1

1 0... 0k k 

  

     (8) 

has all of its roots in the open left half plane. See e.g. [17] for 

reference on feedback linearization and zero dynamics. 

B. Virtual constraint and tracking control 

 To let the system track a desired trajectory of z , we use the 

virtual constraint method, originally developed in the robotics 

literature [18-20], and now appearing more widely. Suppose we 

want the system to track the following trajectory: 

  desz h t , (9) 

where desh is a  times continuously differentiable function. 

Differentiate (9) 1   times and define the error states: 
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Then pick  ik to be a set of stabilizing gains as described in 

(8), and let 
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When desh is  times continuously differentiable and its 

derivatives are bounded, the feedback linearization control can 

locally track desh imposed as a virtual constraint of z [21]. 

 The benefit of the virtual constraint approach is that it gives 

a simple means of parameterizing the desired evolution of the 

vehicle. Instead of all the states, the desired trajectory is 

parameterized only by an output z satisfying A-2 and A-4. 

Later, we will use trajectory optimization to determine the 

existence of a set of interesting trajectories that can be tracked 

by considering the full dynamics and the feedback structure. 

C. Tractor-semitrailer models 

In this work, we use two models: a design model and a 

validation model. For validation, we use TruckSim with its 

impressive 312 states. The literature contains a range of less 

detailed models that could be considered for control design, 

ranging from the nonlinear 37-state, physics-based model in 

[22], to linear models. To demonstrate the fundamental 

robustness of the approach followed in this paper, we base the 

control design on a low-complexity model for an articulated 

truck adapted from [22] and [23], namely a 4 DOF linear model 

with 8 states: 

 
T

y a sx y v r r p       (12) 

where y is the lateral deviation from the lane center to the 

tractor Center of Gravity (CG), yv is the lateral sideslip velocity 

of the tractor,  is the heading angle of the tractor, r is the yaw 

rate of the tractor, a is the articulation angle on the fifth wheel 

(the joint between the tractor and semitrailer), sr is the yaw rate 

of the semitrailer,  is the roll angle and p is the roll rate, as 

shown in Fig. 4.  

            

Fig. 4. Lateral-yaw-roll model of articulated truck  

The linear model is expressed in the form of (1) for consistency,  
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 (13) 

The input to the system is the steering angle f of the tractor 

front axle and the disturbances are road curvature dr and side 

wind yF , where dr is the measured disturbance, namely, 1d in 

(1)  and yF is the unmeasured disturbance, namely, 2d in (1).  

A priori, the above linear model is only valid under the 

following assumptions:  

 The longitudinal speed xv of the truck  has small variation; 

 Due to the stiff connection on the roll dimension, the roll 
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angle of the tractor and semitrailer are the same; 

 The pitch and vertical motion are weakly coupled with the 

lateral, yaw and roll motion, and are ignored in the model; 

 The angles are small and therefore the dynamics can be 

approximated by a linear model. 

The simulations performed later in TruckSim support that these 

assumptions are satisfied in a highway lane keeping scenario.  

Remark 2: The methods developed in this paper, including the 

CBF synthesis, the trajectory optimization, and the continuous-

hold controller, all apply to nonlinear models. Hence, for the 

remainder of the paper, we denote the model as in (1).  

D. The virtual constraint for the truck model 

We select the lateral displacement with preview as the output 

for feedback linearization: 

   0: xz h x y T v    (14) 

with 0T being the preview time, as shown in Fig. 5. 

            

Fig. 5. Preview deviation as output  

The output z  so-defined has relative degree 2 for any dr , i.e., 

 
1

0, 0
d dg f rg gh h  , (15) 

To be more specific, the output dynamics is 
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By A-1, dr changes slowly compared to the dynamics, 

therefore, dr is omitted. Since there are eight states but only z

and z are used in the feedback linearization, six dimensions of 

the state space are hidden. It is shown that the zero dynamics of 

the system is exponentially stable, see Section A in the 

appendix for detail. Since 2  , the feedback structure in (11) 

is essentially a PD controller: 
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 where pK and dK are the PD gains. 

At this point, specifying the desired performance of the truck 

is simplified to designing desh , the desired trajectory of the 

output z , which is discussed in Section IV. 

Remark 3:  If smooth steering angles are desired, the control 

design model can be augmented with an integrator appended to  
u . In this case, the system has relative degree three and the 

control design is nearly the same. 

III. SYNTHESIS OF CONTROL BARRIER FUNCTION 

In this section, we review some existing results for CBFs and 

present the synthesis process of a CBF for LK control of a truck. 

A. Overview of Control Barrier Function 

 Control barrier functions were first proposed in [1] in a 

reciprocal form and a zeroing CBF was subsequently 

introduced in [24], which is more robust than the reciprocal 

form. A zeroing CBF is a scalar function  b x of the state x  that 

is positive in the safe set, and negative in the danger set. The 

algebraic set   | 0x b x   is called the boundary of the CBF. 

For a zeroing CBF, the barrier condition can be written as 

   0b b  ,  (18) 

where 0  is a positive constant, and  is an extended class 

function, that is, a function :f   satisfying 

 f is strictly increasing; 

  0 0.f   

  When   0b x  , b can be negative, but is lower bounded by 

 b ; at the boundary, b should be nonnegative, which 

makes the set   0|x b x   controlled invariant. When 

  0b x  , the condition in (18) enforces convergence to the set  

 | ( ) 0x b x   by setting a lower bound   0bb    . 

B. Synthesis of CBF using Sum of Squares programming 

The synthesis of a CBF is nontrivial. We use the Sum of 

Squares (SOS) technique to synthesize a CBF for the truck LK 

problem.  

SOS has been widely used in the computation of invariant 

sets and barrier certificates for continuous dynamic systems, 

and it can be efficiently solved with semidefinite programming 

(SDP). In addition, with the help of Putinar’s PositivStallensatz, 

SOS condition is enforced on semialgebraic sets via multipliers 

[25]. For more information, see [2, 26-31].  

We focus on a dynamic system with the control affine 

structure in (1), where the dynamics assumed to be polynomial 

and ,  are known semialgebraic sets: 

      | 0 , | 0u du h u d h d    . (19) 

To make the notation compact, let      1 2,d d dg x g x g x    , 

 1 2,
T

d d d . In CBF synthesis, we set  b b  , and seek a 

polynomial CBF  b x  that satisfies the following: 

   0 ;dx b x X  ∣  (20) 
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where dX is the danger set, a semialgebraic set of x : 

   | 0d xdX x h x  , (22) 

0  is a positive constant, and condition (21) is referred to as 
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the CBF condition.  

The difference between a barrier certificate and a CBF shows 

up in condition (21), which depends on the control input, u.  The 

existential quantifier of u  renders (21) not directly solvable by 

current SOS solvers and thus we seek a conservative 

approximation, in which we assume the control input u comes 

from a polynomial controller of x and d , namely,  

 

  

    

  

          

0 ;

0 , ;

0 ,

,

0,

,

.d

dx b x X

x x b x

x x b

u x d

db
f x g x u x d g x d

d

x d

b x
x



   

   

    

 

∣

∣

∣  (23) 

The input may depend on measured disturbance, but not on 

unmeasured disturbance.  

Even with the simplification, there are two bilinear terms that 

must be addressed to make the problem solvable by SOS. The 

first bilinear term is between  b x and  ,u x d . We use bilinear 

alternation [2, 32], which iterates the following two steps [2]: 

 Fix the barrier candidate, search for a controller;  

 Fix the controller, search for a better barrier candidate. 

The following SOS program solves for a controller with a 

fixed  b x : 
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where 1s , 2s , 3s , 4s are the SOS multipliers. Q is a fixed SOS 

polynomial of x  and d ; e is a relaxation scalar variable that 

makes this SOS program feasible. When 0e  , (24) is a 

sufficient condition of (23). 3s is used to enforce the CBF 

condition only when ( ) 0b x  . The first SOS constraint 

restricts the input to be bounded by ; the second SOS 

constraint enforces the CBF condition.  

Remark 4: The choice of Q depends on the order of the 

polynomial required to be SOS. In many cases, Q can simply be
Tx x . 

The other step of the bilinear alternation searches for a better 

CBF candidate with the controller held fixed. In this step, the 

second bilinear term emerges. Because the CBF condition is 

enforced only when   0b x  , an SOS multiplier is used to 

enforce this condition, which creates a bilinear term between b

and the multiplier. We use perturbation to solve this bilinear 

term. The idea is to enforce the CBF condition inside the 0-level 

set of the current CBF candidate 0b , and search for a small 

perturbation b , as shown in (25). 
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The norm is taken on the coefficient of b and 0b for some 

selected monomial bases. Note that the CBF condition is 

enforced on the zero level set of 0b rather than b  which makes 

the bilinear term disappear (since 0b is fixed and not part of the 

SOS variables). Because of this, we need the zero level set of 

0b b  to be similar to that of 0b , which is enforced by the last 

constraint, with 1 0 , a constant that keeps b small 

compared to 0b . The algorithm iteratively updates 0b by 

0b b  until no further progress can be made. Upon 

convergence, that is, 0b  , the original CBF condition is 

enforced. 

     

Fig. 6. Synthesis of a CBF via SOS 

In summary, there are two loops in the algorithm. The inner 

loop iterates the perturbation process, updating 0b with 0b b 

while the outer loop iterates between updating b and updating 

( )u  . Denote the optimization in (24) as    ( ),u e b
u

OPT  , 

with b as input, ( )u  and e as output; and denote the 

optimization in (25) as    , ( ),e bb u
b

OPT   , with  b x and 

( )u  as input, b and e as output. The iteration terminates when 
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a valid CBF is found or no improvement can be made, as shown 

in Fig. 6. Some key parameters for the CBF of lane keeping are 

listed in TABLE I. 

TABLE I   LIST OF PARAMETERS 

xv  20 /m s  

Bound on y  0.3m  

Bound on   0.1rad  

Bound on dr  
0.02 /rad s (turning 

radius of 1000m) 

Bound on yF  2000N  

Bound on f  0.2rad  

IV. TRAJECTORY OPTIMIZATION 

Although a CBF guarantees safety of the system’s 

trajectories, the closed-loop performance could be 

compromised if the student controller is not properly designed. 

For example, in Fig. 15 we show a student controller designed 

with LQR requiring frequent interventions from the CBF and 

thus leading to bad ride comfort. In this chapter, we present an 

optimization procedure that incorporates the CBF condition, 

which is then used to train a student controller that is compatible 

with the CBF. In addition to the CBF condition, other 

constraints are needed to ensure the stability of the continuous 

hold controller, as introduced later in Section V.A. 

A. Direct Collocation 

As discussed in Section II, the trajectory optimization is 

boiled down to the optimization of desh , the desired trajectory 

of the output z . Direct collocation is used to generate the 

trajectory of the states and desh , while desh is imposed as the 

virtual constraint. 

Direct collocation is widely employed in trajectory 

optimization problems due to its effectiveness and robustness 

and is capable of enforcing nonlinear and nonconvex 

constraints. It is thus chosen to optimize the trajectory while 

enforcing the virtual constraint. It works by replacing the 

explicit forward integration of the dynamical systems with a 

series of defect constraints via implicit Runge-Kutta methods, 

which provides better convergence and stability properties 

particularly for highly underactuated dynamical systems. The 

result is a nonlinear programming problem (NLP) [33]. 

In this paper, we utilize a modified Hermite-Simpson scheme 

based direct collocation trajectory optimization method [34]. 

Particularly, the flow (a.k.a. trajectory),  x t , of the continuous 

dynamical system in (13) is approximated by discrete value ix  

at uniformly distributed discrete time instant 

0 1 20 Nt t t t T      with 0N  being the number of 

discrete intervals. Let ix and ix  be the approximated states and 

first order derivatives at node i , they must satisfy the system 

dynamic equation given in (13). Further, if these discrete states 

 
d Bezier curve can parameterize trajectories of any finite length by scaling the 

input. Suppose the horizon of desh is T , then the input is defined as /s t T . 

satisfy the following defect constraints at all interior points

 1,3, , N 1i  , 

 

   

   

1 1 1 1

1 1 1 1

3 1
: 0,

2 4

1
: 0,

2 8

i i i i i i

i i i i i i

N
x x x x x

T

T
x x x x x

N





   

   

     

     

 (26) 

then they are accurate approximations of the given continuous 

dynamics. (26) defines the modified Hermite-Simpson 

conditions for the direct collocation trajectory optimization 

[34]. 

Based on the above formulation, now we can construct a 

constrained nonlinear programming problem to solve the 

trajectory optimization with the virtual constraint for the 

articulated truck model. To incorporate the virtual constraints 

based feedback control with the trajectory optimization, we 

enforce the output dynamics equation given in (16) at each 

node. Then the control input iu  will be implicitly determined 

via this constraint without explicitly enforcing it as in (17). 

Further, the output z  and its derivative z  should equal to the 

desired trajectory  desh t at 0t  to ensure that the system lies 

on the zero dynamics manifold  0,t T  .  

The desired trajectory desh is parameterized as Bezier curve, 

which is widely used in computer graphics and related fields. A 

Bezier curve of order m is an m-th order polynomial defined on 

 0,1 : 

    
0

1
m

m ii

i

i

m
s s s

i
B 





 
  

 
 , (27) 

where i are the Bezier coefficients. d  The Bezier order is 

chosen to be 8. 

Let   be the cost function to be minimized, the trajectory 

optimization problem can be stated as: 

 

 

     

       
 

 

 

 

       

    

1 1

0

0

0

0

0

0

max max

( )

( )

0

1 1 1

2 3

arg min . .

0, 0,

,

0,

,

0,

0,

,

1
, 0,

1

,

,

i

i

i i

i i i i i i

d

i i

des i p des i d des i

des

des

i

b x
i i

b x

x x

s t

x f x x g x u g x d

z h t K z h t K z h t

x t x

z h t

z h t

u u u

e
b x x

e

V x T d c V x d

x T x T c

 



 





 

  

     



 

 

  


 



  

 

 (28) 

where  i iz z x ,  i iz z x , and  ,i i iz z x x , respectively. 

The first 3 lines of constraints correspond to the colocation 
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constraint; 4th line specifies the initial states; 5th and 6th line 

correspond to the virtual constraint; the 7th line is the input 

constraint; the 8th line is the CBF constraint, the last two 

constraints are needed to guarantee stability of the continuous 

hold controller, which will be explained in Appendix Section 

B.  

Remark 5: The CBF condition is modified based on (18). Since 

1

1

b

b

e

e




is bounded within  1,1 , when  b x is small, the lower 

bound for b saturates at 1, instead of growing linearly as b

, which may be too difficult to satisfy. Besides, when   0b x  , 

1
0

1

b

b

e

e





, which resembles the original CBF condition in (20). 

Since 
1

1

b

b

e

e




 is still an extended class function, by 

Proposition 1 in [35],   0|x b x  is still invariant under the 

modified constraint. 

The cost function in (28) is a weighted sum of multiple cost 

functions, consisting of the following terms: 

 Final value cost   T

x dV x r , where  x dr is the 

steady state under a given dr , and ( )V  is a Lyapunov 

function around the origin. 

 
2z dt , the square integral of z  

 
2z dt , the square integral of jerk 

 y


, the maximum deviation from road center 

 r


, maximum yaw rate 

 
2u dt , the square integral of the input 

 m ，penalty on the last Bezier coefficient (facilitate 

convergence of the Bezier curve) 

The terms that consist of function integrals are approximately 

computed using the Simpson’s quadrature rule [36]. 

The setting of the constraints and costs seem complicated, 

they are the result of repeated trial and tuning. It should be 

emphasized that CBF constraint is enforced in the trajectory 

optimization. We hope that by enforcing CBF condition on the 

training set, the policy generated by supervised learning inherits 

this property.  

            

Fig. 7. Example of trajectory optimization result  

Fig. 7 shows an example trajectory with initial lateral 

deviation 0 0.5y m and road yaw rate 0.02 /dr rad s . The 

plot of y and the Bezier output z shows that the trajectory is 

converging to the lane center. The plot of the CBF value and 

the control input shows that the trajectory generated by direct 

collocation satisfies the input and CBF constraints.  

The trajectory optimization is solved with FROST, which 

uses a symbolic calculation to boost the nonlinear optimization  

[37]. The trajectory optimization for each initial condition can 

be finished within 10 seconds. 

B. Generating the training set 

It is impossible to perform trajectory optimization for all the 

initial conditions offline, so instead, we use supervised learning 

to train the mapping from initial conditions to desired 

trajectories with a finite trajectory library, which is generated 

by the above-described trajectory optimization process.  

By varying the initial conditions and generating the 

corresponding trajectories with direct collocation, we hope to 

‘train’ the neural network to generate good trajectories for 

various initial conditions. The inputs to the neural network are 

called features, denoted as ; in our case, they are variables 

that describe the initial condition. The output of the neural 

network is a vector of control parameters, denoted as , in this 

case, the Bezier coefficients. 

 :  . (29) 

The selection of initial conditions is done in a grid fashion. We 

define a grid on the feature space and perform trajectory 

optimization on each of the grid points. Since the zero dynamics 

is stable,    desz t h t  for
2

desh C implies    desx t x t , 

where desx is the desired state trajectory corresponding to desh . 

This implies that we only need two states to determine the 

asymptotic behavior of the system, but not necessarily the 

transient behavior. In practice, the more states we use to 

parameterize the initial condition, the finer the trajectory library 

will be.  

However, under a grid fashion of drawing samples, the 

number of samples needed grows exponentially with the state 

dimension. Therefore, the dimension of  is limited by 

available computation power. We let   contain 6 features, 

including 5 states and dr : 

 , , , , ,a y dy r v r      . (30) 

Under this setup, the computation needed to generate the 

trajectory library is manageable (about 20 hours on a desktop). 

With more computation power, a higher dimensional  can 

lead to a finer trajectory library.  

Even though most driving behavior is mild, it is important 

that the controller be able to handle bad initial conditions. We 

generate, therefore, two training sets, denoted as 1S  and 2S , 

where 1S consists of trajectories defined for a duration of 1 

second, and the features of the trajectories have a wider span, 

and 2S consists of trajectories defined over a  3 second window, 

with the features more concentrated around the origin. 1S is 

used to train a mapping for severe initial conditions and 
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transients, and 2S is used to train a mapping for mild situations 

and normal driving. Some of the initial conditions might render 

the trajectory optimization infeasible, therefore only the 

feasible cases are included in the training sets. In the 

implementation, the CH controller will choose which mapping 

to use based on the severity of the situation. 

TABLE II   TRAINING SET PARAMETER SETTING 

Feature 1S  2S  

y range  0.0.5, ]5 [m   0.3, 0.3 [m]  

yv range  1, [1 m/ s]   1, [1 m/ s]  

  range  0.04, 0.04 [ ]rad   0.04, 0.04 [ ]rad  

r  range  0.06, 0.06 [ / ]rad s   0.03, 0.03 [rad/ s]  

dr  range  0.03, 0.03 [ / ]rad s   0.025, 0.025 [ / ]rad s  

a  range  0.04, 0.04 [ ]rad   0.04, 0.04 [ ]rad  

The parameters for the training are included in TABLE II. In total, 

there are 62825 trajectories in 1S , and 29300 trajectories in 2S .  

C. Supervised learning 

With the training set ready, there are several choices for the 

supervised learning, such as linear regression, Gaussian process 

regression, and neural networks. In our problem, since there is 

no structural information about the trajectory generator and we 

need strong expressive power to capture the potentially 

complicated mapping from the initial condition to the desired 

trajectory, we choose a neural network for its strong expressive 

power. 

We train a neural network that has 6 hidden layers with 200 

neurons in each layer and use the ReLU function as the rectifier. 

The training is performed using Tensorflow [38]. 85% of the 

data is used for training and 15% is used for testing. TABLE III 

shows the mean squared error (MSE) of the training result.  

TABLE III   TRAINING RESULT 

 1S  2S  

MSE of training data 0.13 0.0023 

MSE of testing data 0.16 0.0024 

V. IMPLEMENTATION OF LEARNING BASED CONTROLLER 

A. Continuous hold feedback control 

Once the trajectory generator is trained, we can generate a 

finite horizon desired trajectory for a given initial condition. In 

order to piece together the finite horizon trajectories and 

synthesize a controller from the trajectory generator, we employ 

a continuous hold (CH) controller. The name continuous hold 

comes from the analogy with a zero-order hold and an n-th 

order hold. While an n-th order hold approximates the segment 

between two consecutive sampling times with an n-th order 

polynomial, continuous hold executes a predefined continuous 

trajectory. 

 The idea of continuous hold is not claimed to be novel; a 

motion primitive is a special type of continuous hold [39]. The 

trajectory is updated in an event-triggered fashion, which will 

be discussed in detail in Section V.B. While event-triggered 

finite-horizon control is studied in [40], in the CH setting, it 

should be noted that the control action between triggering 

events is a continuous function of time and states instead of 

being a constant.  

For the truck example, the basic continuous hold controller 

[41] must be extended to systems with exogenous disturbances. 

The stability and set invariance property of the CH controller 

are proved, including the analysis for the case when only a 

subset of the state is used for feedback, in Appendix Section B. 

B. Event-triggered update of the CH controller 

The CH controller uses the mapping trained by supervised 

learning to generate a desired trajectory desh  for the output z

based on the current state and dr , then track the desired 

trajectory with the control law in (17). The desired trajectory 

will be updated under three circumstances: 

 The desired trajectory is executed to the end 

 There is a significant change in road curvature 

 The trajectory tracking error becomes large 

In the first case, since the trajectory optimization has a finite 

horizon (1s or 3s), the neural network will use the current value 

of the features to generate a new desired trajectory. In the 

second case, if the road curvature dr differs much from that 

used to generate the current desired trajectory, the trajectory 

should be updated since dr  is assumed to be constant during the 

entire horizon of the trajectory. The rest of the features are 

simply initial conditions, so their change does not trigger an 

update of the desired trajectory. In the third case, when the 

trajectory deviates too far from the desired trajectory, re-

planning is called for. This is likely to be caused by an 

unexpected disturbance, such as wind gust. 

When switching from one trajectory to the next, smoothing 

is performed to make sure that desh is twice differentiable, 

which ensures that the control signal is continuous. The 

smoothing process is explained in the Appendix Section C.  

C. CBF as a supervisory controller 

Even though the CBF condition is enforced in the trajectory 

optimization used in the training set, after supervised learning, 

there is no guarantee that the trajectory generated by the neural 

network always satisfies the CBF condition. Therefore, CBF is 

still implemented as a supervisory controller on top of the CH 

controller, as shown in Fig. 2. The CBF solves the following 

optimization: 

 
 0

2 2

1 2

0

min

. , , 0. , ,

old
u

u u u

x d

w w

uu us ut


  

    




 (31) 

where u is the intervention of the CBF, oldu is the 

intervention of the previous time instant,   is the CBF 

condition. The reason for the second penalty term is to prevent 

chattering if intervention is necessary. The CBF condition is 

defined as  

 

 

 

0, 0

1
0, 0

1

b

b

b if b x

b if b x

b

e

e





 



 

 








, (32) 
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where the transition at   0b x  is continuous, i.e. the two 

constraint coincides at   0b x  . 

            

Fig. 8. lower bound for b   

Remark 6: When   0b x  , the existence of u is guaranteed 

by the construction of the CBF; when   0b x  , there is no 

guarantee of feasibility. When (31) is infeasible, the input is 

saturated by . 

VI. SIMULATION RESULT 

We validate our control design on TruckSim, a high fidelity 

physics-based simulation software that is widely acknowledged 

by the trucking industry. The model picked for simulation has 

312 states and is a tractor-semitrailer with heavy cargo in the 

trailer, weighing 35 tons in total; see Fig. 9.  

 

Fig. 9. Animation with a 312 state model in TruckSim 

The truck is asked to drive on a road with a minimum turning 

radius of 1000 m at 20m/s. A side-wind is simulated as a lateral 

force and roll moment to the truck. Because of the heavy cargo, 

the truck has a high CG. Hence, the roll motion in the simulation 

is significant and the commanded maneuvers are aggressive. 

 

Fig. 10. Disturbance to the system  

As shown in Fig. 10, the road profile consists of segments 

with constant curvature (per US road design standards) Though 

rather extreme,  the side-wind is a square wave with maximum 

allowed magnitude.  

 

Fig. 11. Value of the CBF and key states during simulation  

Fig. 11 shows the value of the CBF and two key states. 

Lateral deviation y and roll angle  never exceed the desired 

limits (plotted in red) and  b x was always above zero, 

showing that the CBF (safety) bound was never breached.  

 

Fig. 12. Input and intervention of CBF during simulation 

The steering input trajectory is shown in Fig. 12. We zoom 

in the input to show a 5 second period of input. The input is 

actually reasonably smooth. The bumps are necessary to 

counter the side-wind when it changes direction. The lower plot 

shows f , and its constant value of zero indicates that no 

interventions from CBF occurred. 

To demonstrate the controller’s ability to handle bad initial 

conditions, we perturb the lateral deviation with a square wave, 

simulating the situation when the initial position is 0.5m from 

the lane center, as shown in Fig. 13 and Fig. 14. 

 

Fig. 13. Value of CBF and key states with large initial 

deviations 
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Fig. 14. Input and intervention of CBF with large initial 

deviations 

Fig. 14 shows the input under a large deviation. The CBF 

intervened 3 times, and the interventions are mild compared to 

the size of 0u . When  b x was below zero, the learned 

controller was able to drive the system back to the safe set 

without the intervention of the CBF. 

As a comparison, we tuned an LQR controller with 

feedforward control of dr , and it performed very well under 

normal driving conditions. However, when the initial condition 

is bad (under the same setting as Fig. 13), the LQR controller 

triggered intervention from the CBF multiple times (11 times) 

and the jerk was severe, as shown in Fig. 15.  

 

Fig. 15. Simulation result with LQR as student controller 

Though the LQR controller was fine-tuned, it triggered 

severe intervention from the CBF frequently. On the other hand, 

we observed none or very mild interventions from the CBF 

under the learning-based controller in all trial simulations when 

the states are within the span of the training set. 

VII. CONCLUSION AND DISCUSSION 

We propose a supervised learning approach to construct 

controllers with smooth performance and a provable safety 

guarantee. The idea is to use trajectory optimization to generate 

a training set consisting of trajectories that satisfy a Control 

Barrier Function (CBF) safety constraint, then use supervised 

learning to extract a mapping from system initial conditions to 

desired trajectories. The policy generated with supervised 

learning inherits the good properties of the training set, though 

nothing can be proved. On top of that, a safety guarantee is 

formally imposed with a CBF as a supervisory controller. The 

simulations showed that the proposed approach is able to reduce 

the intervention of the CBF and therefore provide high-quality 

closed-loop performance while guaranteeing safety. 

We chose to learn a mapping from initial conditions to the 

desired output trajectory, instead of a mapping from the initial 

condition to the desired input trajectory. Trajectory tracking 

was implemented with a continuous-hold (CH) controller. The 

CH control structure is able to transform the synthesis problem 

into a trajectory optimization problem, which may be much 

simpler for complicated nonlinear systems such as trucks and 

robots [41]. 

There are problems to be solved for the proposed method. 

First, when the initial condition is not contained inside the 

feature range of the training set, i.e. when the neural network is 

doing extrapolation rather than interpolation, the performance 

can be poor. Though rather obvious, it is important to 

emphasize that to obtain good performance over a wide range, 

one needs to have training data with adequate coverage. Second, 

when training data from a large range of features are stacked 

together, the regression accuracy may drop and the performance 

suffers. To solve this, one might need more a complicated 

neural network structure, or use multiple neural networks for 

different situations.  
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APPENDIX 

A. Zero dynamics of the truck lateral dynamics 

To show the zero dynamics, we use the following state 

transformation that renders a new choice of states: 

 
T

TT z z      , (33) 

where T is a full-rank linear transformation matrix:  

 

0
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, (34) 

and iB is the i-th entry of B in (13). The transformation is linear 

and full rank. The dynamics under  is 

 
dA Bu Er    , (35) 

Moreover,  

  1 60
T

B TB CAB   0 , (36) 

where  0 1 51 0 xC T v  0 .Therefore, the dynamics under 

 can be written as 
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, (37) 
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where  , ,z z has exponentially stable zero dynamics, 

meaning  ,0,0   is exponentially stable.  

B. Analysis of the continuous hold controller 

In this section, we present the stability and set invariance 

analysis of the continuous hold (CH) controller. 

B.1 CH controller with full state parameterization 

Systems of the following form are considered: 

  , ,x f x u d , (38) 

where x , u and d are the state, the input and the measured 

disturbance respectively. 

Remark 7: The result about the CH controller is applicable to 

general nonlinear dynamic model; the control-affine nonlinear 

model in (1) (assuming 2 0d  ) and the linear model of the 

truck are special cases. 

We make the following assumptions about the system 

dynamics. 

A-5: : n m p nf    is locally Lipschitz continuous in

x , u and d .  

A-6: p  and mappings : n

x  , : p

u  , 

Lipschitz continuous, such that     , , 0x uf d d d   , i.e., 

for every exogenous disturbance d , there exist two 

mappings x and u that map any d to a unique 

equilibrium point and a unique input that maintains the 

equilibrium.  

Remark 8: There may be non-unique equilibrium points of the 

system due to the cyclic coordinates, i.e., states that do not 

affect the dynamics, see [42] for detail. Therefore, a function 

x is needed to select a single equilibrium point given d . A-3 

gives a possible definition of x . 

A-7: d  , there is an open ball 
n

dB  about the origin, 

and a positive-definite, locally Lipschitz-continuous function 

:d dV B  , and constants 1 20     such that 

 d xx B d   , 

 
 

 1 2

,

.

x

T T

d

x x d

x x V x x x



 

 

 
 (39) 

A-8: n  , compact, such that  , xd d   . There 

exists CBF ( )b x , such that  , 0x b x   ; ,d 

   0xb d  . Moreover, , d    , there exists 

: 0,d m

pu T
     and a corresponding state trajectory  

: 0,d n

pT      satisfying 

 

         

 

    

 
   

 
   

1 0

0

0, , lim , lim ,

d

x x

d d

d p x d x

d d

t

d d

p x u
d d

V T d c V d

db
t b t

dx

t T t d u t d



 

 



 
   

   

  

  
 

  

 

     

 (40) 

where 0pT  is the horizon, 0  , 11 0c  are predefined 

constants. 

A CH controller maintains a timer t̂ that is reset to 0 when 

the triggering event occurs and the desired trajectory is updated. 

In between events, the timer increases at a constant rate equal 

to 1. An update is triggered when either the trajectory is 

executed to its end, i.e. ˆ
pt T , or when an interruption is 

detected. A possible interruption includes a change in d or an 

unexpected disturbance that makes the tracking error too big. 

The CH input is  

   ˆ ˆ ˆ( , , ) ( ) ,CH d fb du t x d u t u x t   , (41) 

where is the initial state when ˆ 0t  , and :fb n n mu  

is a feedback controller that tracks 
d

 . 

The closed-loop system under CH feedback is then 

      ,ˆ ˆ ˆ, (: , ,) ,CH d fb dx f x d f xt u t u x t d   . (42) 

A-9: For any trajectory
d

 in A-8 that a CH controller tries to 

follow, there exists a feedback controller :fb n n mu  

that makes 
d

 uniformly locally exponentially stable, i.e., the 

closed-loop system in (42) satisfies 

 
    

         2 2 1

1 2 1 1

2 2 1 1

, . . 0 , ,n d

p

c t td d

B s t t t T x t t B

x t t e x t t



 



 
 

       

  
 (43) 

for some 2 0c  . 

Next, we present the result on the stability property of the CH 

controller. First, consider the case when d is fixed.  

Theorem 1: Under assumptions A-5, A-6, A-7, A-8, and A-9, 

for an initial condition   | 0x b x    the closed-loop 

system in (42) will stay inside   | 0x b x  , and if d stops 

changing after 0T  , the state will converge to  x d

exponentially. 

Proof: From A-8, since   | 0x b x   ,   , which means 

the feedback control in (41) is well defined. From (40), the CBF 

 b x remains nonnegative as discussed in Section III, which 

proves that the state will stay inside   | 0x b x  , and thus 

  , 0x t t   .  

When d stops changing, from the Lyapunov condition in A-

8,          1

1 0n

d p x d xV x nT d c V x d    , 1,2,3,...n  , 

which implies   lim 0d p
n

V x nT


 . From A-7, the sequence 

 px nT converges to  x d . Therefore, from the last 

assumption in (40), the state stays at  x d . 
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B.2 State decomposition and dimension reduction 

As discussed in Section IV.B, under a grid fashion sampling 

of the initial condition, the computation power limits the 

dimension of the feature that describes the initial condition. To 

parameterize the initial condition with a subset of states, we 

decompose the states into two parts:  1 2;x x x , where in 

practice 1

1

n
x  are states with slow dynamics and 2

2

n
x 

are states with fast and stable dynamics. We consider the case 

where the trajectory and tracking feedback fbu are 

parameterized by only 1x . 

Definition 1: A locally Lipschitz continuous function 
1 2:

n n  such that  0 0  and satisfies 

 
     

    

1 2

2 1

, ; ,x x x

x x

d d d d

d d

  

  

     


 (44) 

is called an insertion map.  

The condition in (44) states that for any d , the insertion 

map maps the steady state of 1x  to the steady state of 2x . To 

extend the previous conclusion to cases where trajectories are 

parameterized with only 1x , we make the following 

assumptions. 

A-10: n  , compact, such that  , xd d   . 

There exists CBF ( )b x , such that.  , 0x b x   ; 

  , 0xbd d   ;  1 2, ; ,d        2 1 ,    

with 1 0c  , there exists
1

: 0,d m

pu T
    and a 

corresponding state trajectory,  
1

: 0,d n

pT      satisfying  

 

         

 
   

1 1

1 1
1

0 ,

| 0,d

d d

d p x d x

d d

t

V T d cV d

db
t t

dx 

 

 

   

 

  

 
 (45) 

 
   

   

   
   

1 1

1 1

,

,

lim ,

lim ,

x

x

d

x
d

d

u
d

t d

u t d


   


   

 



  

  




 (46) 

     
1 12 1

d d

p pT T    . (47) 

A-11: There exists a feedback 1 1

1 :
n nfb mu   that

  
11 1 1

ˆ,fb du x t  makes 
1

d

 uniformly locally exponentially 

stable, i.e. (43) is satisfied with       
11 1 1

ˆ ˆ ˆ,d fb du t u t u x t   . 

Remark 9: The subscript 
11

d

 means the desired trajectory of 

1x with initial condition  1 10x  , and 
12

d

 means the desired 

trajectory of 2x , 
1 1 11 2;d d d

        . A-11 is possible if the 

dynamic subsystem of 2x  is locally exponentially stable. 

Theorem 2: Under A-5, A-6, A-7, A-10, and A-11, d  , 

    1 1; | 0x b x         , the closed-loop system under 

CH feedback will stay inside   | 0x b x  , and if d stops 

changing after some 0T  , the state will converge to  x d

exponentially. 

Proof: By A-11, the closed loop system exponentially 

converges to the CH desired trajectory. From A-10, by CBF 

condition,   | 0x b x  is invariant under the CH controller. 

When d stops changing, the closed loop system exponentially 

converges to 
d

 and        1n

d p x d xV x nT d c V d     , 

for 1,2,3,...n  , and satisfies     2 1p px nT x nT . So every 

time the desired trajectory is executed to the end, there exists 

 1 p

d

x nT
  that follows the previous trajectory. By definition of the 

insertion map, (44)  makes sure that when  1

1 xx d ,

   2

1 xx d  . By (46),  x t converges to  x d

exponentially.  

 

Remark 10: When the dynamics of 2x is stable and fast, 

12 2:y x    converges to zero quickly, the influence of initial 

condition of 2x is small enough to be neglected. Therefore, the 

CH can be parameterized only by 1x . 

Now consider a CH controller with trajectories generated 

with the procedure described in (28). A-5 and A-6 are trivially 

satisfied by the linear dynamics, where x is defined such that 

it maps dr to the equilibrium point that renders   0z h x  , 

which is unique. It can be shown that x  is Lipschitz 

continuous.  We use the cost-to-go function V of a Linear 

Quadratic Regulator (LQR) as the Lyapunov function by 

solving the Riccati equation. SinceV is quadratic, and the truck 

dynamic is linear, V satisfies A-7 for all dr . The CBF condition 

and Lyapunov condition in A-10 are enforced in the trajectory 

optimization by the last two constraints in (28). Pick

1 4 2y ax z z B v B r      , since z and z are part of 

1x , the closed loop dynamics is indeed stable under the PD 

control that only depends on 1x , which is the direct result of a 

stable zero dynamics, therefore satisfies the exponential 

stability condition in A-11. Note that the initial conditions in 

the training set are parameterized by , which is a full rank 

linear transformation of 1x and dr . By Theorem 2, the closed-

loop system with CH feedback stays within   0|x b x  , and 

converges to  x d exponentially once dr stops changing.  

C. Smoothing of the desired trajectory 

The smoothing of a Bezier curve is very simple. For an m-th 

order Bezier curve, the value for 0th to 2nd derivative at 0s  are 

 

 

 

    

0

1 0

2 0 1

0 ,

' 0 ,

'' 0 1 2 .

m m

m m

B

B

B



 

  



 

   

 (48) 
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Solving for 0 , 1 and 2 : 

 

 

0

0

0

1 0

0

2 1 0

,

,

2 ,
1

des

des

des

h

h

m

h

m m



 

  



 

  


 (49) 

where 
0

desh , 0

desh and 0

desh are the value and derivatives of the 

desired trajectory before the update. The smoothing process 

requires that the Bezier order should be high enough so that the 

influence of the smoothing is limited to only the beginning of 

the curve. We choose the Bezier order to be 8. 
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