
 1

Abstract—Correct-by-construction techniques, such as control

barrier functions (CBFs), can be used to guarantee closed-loop

safety by acting as a supervisor of an existing or legacy controller.

However, supervisory-control intervention typically compromises

the performance of the closed-loop system. On the other hand,

machine learning has been used to synthesize controllers that

inherit good properties from a training dataset, though safety is

typically not guaranteed due to the difficulty of analyzing the

associated neural network. In this paper, supervised learning is

combined with CBFs to synthesize controllers that enjoy good

performance with provable safety. A training set is generated by

trajectory optimization that incorporates the CBF constraint for

an interesting range of initial conditions of the truck model. A

control policy is obtained via supervised learning that maps a

feature representing the initial conditions to a parameterized

desired trajectory. The learning-based controller is used as the

performance controller and a CBF-based supervisory controller

guarantees safety. A case study of lane keeping for articulated

trucks shows that the controller trained by supervised learning

inherits the good performance of the training set and rarely

requires intervention by the CBF supervisor.

Index Terms—Control Barrier Function, Supervised Learning,

trajectory optimization

Nomenclature

denotes the set of real number, n denotes the n-

dimensional Euclidean space,  x denotes the space of all

polynomials of x ,  x denotes the cone of SOS polynomials,

a subset of  x . For a scalar function : nh  of nx

and a vector field : n nf  , the Lie derivative is defined as

   f

dh
h x f x

dx
 , which is a scalar function of x , and

1n n

f f fh h , with
0

f h h . nC denotes sets of functions

with continuous n-th derivatives.

I. INTRODUCTION

ORRECT-by-construction control synthesis has been a

promising direction of research that brings formal safety

guarantees to controller design. In particular, Control

Barrier Functions (CBF) can be overlaid on existing controllers

so as to impose closed-loop safety in a plug-and-play fashion

[1, 2]. The key idea in the design of a CBF is to compute a

forward invariant set that contains the safe set and excludes the

danger set. The CBF can then be implemented in a supervisory

a This work was supported in part by the NSF under Grant CNS-1239037 and

in part by the Toyota Research Institute.
b Yuxiao Chen and Huei Peng are with the Department of Mechanical
Engineering, University of Michigan, Ann Arbor, MI, 48109 USA e-mail:

{chenyx,hpeng}@umich.edu.

control structure to guarantee safety without redesigning the

performance controller, hereafter called the ‘student’ controller

because it is being ‘supervised’ by the CBF.

Fig. 1. Block diagram of Control Carrier Function (CBF)

supervising a “student” controller.

As shown in Fig. 1, 0u denotes the control input from the student

controller, which can be designed with any existing method,

and u denotes the input signal after the intervention of the

supervisory controller. If 0u respects the safety constraint, then

0u u ; otherwise a ‘minimal intervention’ is applied.

Depending on the form of the barrier function, the

‘intervention’ may be computed through quadratic

programming [1, 3], mixed integer programming [4], or in other

forms.

While safety is assured independently of the choice of

student controller, if the student controller is not properly

designed, or is designed in a way that is not compatible with the

CBF, the CBF may be triggered frequently, leading to

undesirable closed-loop performance. In [5], when working

with a student controller for Adaptive Cruise Control (ACC)

that is not properly designed, the CBF causes spikes on the input

when activated. In [4], when the student controller is designed

without considering obstacle avoidance, the CBF has to

intervene frequently and severely to ensure obstacle avoidance.

These examples, on one hand, demonstrate the power of a CBF

to provide safety guarantees, but they also show there is room

for improvement. If the student controller is designed in a way

that takes the supervisor into account, the interventions can be

reduced and the overall system’s performance can be improved.

On the other hand, machine learning has been used

extensively in dynamic control. Supervised learning has been

used to learn a control policy with structure[6, 7], deep learning

recently was used to generate end-to-end Lane Keeping (LK)

policy, i.e., a mapping directly from the camera pixels to the

steering input [8], and reinforcement learning can be used to

generate a control policy in an ‘explore and evaluate’ manner

c Ayonga Hereid and Jessy Grizzle are with the Department of EECS,

University of Michigan, Ann Arbor, MI, 48109 USA e-mail: {ayonga,

grizzle}@umich.edu.

Enhancing the performance of a safe controller

via supervised learning for truck lateral control
Yuxiao Chenab, Ayonga Hereidc , Huei Pengb and Jessy Grizzlec, Fellow, IEEE

C

 2

[9-11]. However, one major deficit of machine learning is its

extreme difficulty for analysis. The number of parameters

contained in a neural network can easily reach several thousand,

even millions, which makes it practically impossible to analyze.

Therefore, the safety of a learning-based controller should rely

on other tools, such as reachable sets and barrier functions. In

this sense, machine learning and CBFs complement one other.

Existing methods that combine learning with safety

guarantee include reachable-set-based learning scheme that can

guarantee safety for online learning of a control policy [12, 13],

a barrier-function-based online learning scheme [14], and

Gaussian process learning [15]. Unlike approaches that aim at

guaranteeing safety with learning, such as [12-15], the method

proposed in this paper separates safety from the performance.

The safety guarantee is provided by a CBF, and supervised

learning is used to improve the performance considering the

influence of the CBF as a supervisor.

The method we propose is to perform trajectory optimization

offline, generate a library consisting of trajectories with good

properties, namely, stabilizing an equilibrium, attenuating

disturbances, and satisfying a CBF condition. We then use

supervised learning to design a student controller that inherits

the properties of the trajectory library. The CBF is implemented

as a supervisor of the learning-based controller, as shown in

Fig. 2. Since the CBF condition is enforced in the training set,

an intervention by the supervisor is rarely triggered. It should

be emphasized that the safety is still guaranteed by the CBF, the

supervised learning only aims to improve performance.

Fig. 2. Structure of the proposed supervisory control

The main contributions of this paper are the following two

points. First, we propose a supervised learning based method to

design a student controller that takes the CBF condition into

account, is applicable to a large region of initial conditions, and

rarely triggers an intervention from the supervisory controller.

With supervised learning, the design of a safe student controller

is transformed into the design of safe trajectories, which is

much easier, as conceptually shown in Fig. 3.

Fig. 3. Learning based trajectory generator

Second, we provide a stability and set invariance analysis of

the learning-based controller under the framework of

continuous hold (CH) feedback control. Applying the proposed

method, we are able to provide a safety guarantee for Lane

Keeping control (LK) of an articulated truck, while achieving

good ride comfort.

The remainder of the paper is structured as follows. We first

introduce the truck model and the feedback linearization

structure in Section II. Then we present the Sum of Squares

(SOS) approach for the synthesis of a CBF in Section III. Then

we show the trajectory optimization process with direct

collocation that incorporates the CBF condition in Section IV.

The obtained trajectory library is then used to train a neural

network that acts as a trajectory generator, as presented in

Section IV. The trajectory generator is implemented in a

Continuous Hold control structure with CBF as the supervisor

on top of it, which is presented in Section V. Finally, we present

the LK problem as an example in Section VI and conclude in

Section VII.

II. DYNAMIC MODEL AND VIRTUAL CONSTRAINT

In this paper, we consider a control affine nonlinear model:

       

1 2

1

2 2

1 2

1

2

1

, ,

,

,n l

d

l

dx f x g x u g

u d d

x d g x d

x     

  




 (1)

where x , u , 1d , and 2d represent the state, input, measured

disturbance, and unmeasured disturbances, respectively.

Remark 1: The unmeasured disturbance 2d will be countered

with the feedback control. Therefore, it is assumed that 2 0d 

for the following analysis of feedback linearization.

A. Model assumptions

The results in this paper are developed under four key

assumptions:

A-1: It is assumed that 1d changes slowly comparing to the

system dynamics. Therefore, 1d is treated as constant in the

following analysis.

A-2: There exists an output  z h x for x within an open

subset n , such that for all 11d  , z has relative degree
 , where the relative degree is defined as the integer such that

x  ,

 

 

1

1

0, 1,2,..., 1;

0,

i

g f

g f

h x i

h x





  


 (2)

where

      1 1df x f x g x d  . (3)

A-3: It is assumed that when 2 0d  , for all 1 1d  , there exists

a unique  1u d  that maintains a unique equilibrium point

n

ex  with   0eh x  , denoted as  1e xx d :

       

 

11 1 0,

0.e

e de u ef g xg d

x

x x d

h

  


 (4)

 3

Then from feedback linearization, there exists a state

transformation:

 

 
 

 

   

1

2

1 1

,

,n

f

T x

T x

h x

T x

z

h x z

 

 





 

 

   
   

      
   

  

  
   
    

 (5)

where T is a bijective diffeomorphism over , and the

transformation satisfies  1 0
T

g x
x





. Therefore, the dynamics

of the “hidden” states is represented as

  ,    . (6)

In particular,  ,0   is the zero dynamics of the system

with output z , and there exists a smooth surface 

defined by  : 0x   ∣ , which is the zero dynamics

manifold.

A-4: We assume that the zero dynamics of the system under

output z is exponentially stable within .

Then by Theorem 11.2.3 in [16], the following feedback

linearization controller constructed from z and its derivatives

stabilizes the equilibrium ex :

 

 0 1 11

1
... ,

f

g f

u k k h x
h x



 
 

     
  (7)

where  ik is a set of exponentially stabilizing gains in the

sense that the following characteristic equation

1

1 0... 0k k 

  

    (8)

has all of its roots in the open left half plane. See e.g. [17] for

reference on feedback linearization and zero dynamics.

B. Virtual constraint and tracking control

 To let the system track a desired trajectory of z , we use the

virtual constraint method, originally developed in the robotics

literature [18-20], and now appearing more widely. Suppose we

want the system to track the following trajectory:

  desz h t , (9)

where desh is a  times continuously differentiable function.

Differentiate (9) 1  times and define the error states:

 

1

2

1 1

des

des

des

e z h

e z h

e z h
 



 

 

 

 

. (10)

Then pick  ik to be a set of stabilizing gains as described in

(8), and let

 

 0 1 11

1
... ,

f

g f

u k e k e h x
h x



  
     
  (11)

When desh is  times continuously differentiable and its

derivatives are bounded, the feedback linearization control can

locally track desh imposed as a virtual constraint of z [21].

 The benefit of the virtual constraint approach is that it gives

a simple means of parameterizing the desired evolution of the

vehicle. Instead of all the states, the desired trajectory is

parameterized only by an output z satisfying A-2 and A-4.

Later, we will use trajectory optimization to determine the

existence of a set of interesting trajectories that can be tracked

by considering the full dynamics and the feedback structure.

C. Tractor-semitrailer models

In this work, we use two models: a design model and a

validation model. For validation, we use TruckSim with its

impressive 312 states. The literature contains a range of less

detailed models that could be considered for control design,

ranging from the nonlinear 37-state, physics-based model in

[22], to linear models. To demonstrate the fundamental

robustness of the approach followed in this paper, we base the

control design on a low-complexity model for an articulated

truck adapted from [22] and [23], namely a 4 DOF linear model

with 8 states:

T

y a sx y v r r p      (12)

where y is the lateral deviation from the lane center to the

tractor Center of Gravity (CG), yv is the lateral sideslip velocity

of the tractor,  is the heading angle of the tractor, r is the yaw

rate of the tractor, a is the articulation angle on the fifth wheel

(the joint between the tractor and semitrailer), sr is the yaw rate

of the semitrailer,  is the roll angle and p is the roll rate, as

shown in Fig. 4.

Fig. 4. Lateral-yaw-roll model of articulated truck

The linear model is expressed in the form of (1) for consistency,

       

1 2

1 2

,

f

y

d

f d

d d yf x g x g x r g xx

Ax B E r

F

E F





  

 




 (13)

The input to the system is the steering angle f of the tractor

front axle and the disturbances are road curvature dr and side

wind yF , where dr is the measured disturbance, namely, 1d in

(1) and yF is the unmeasured disturbance, namely, 2d in (1).

A priori, the above linear model is only valid under the

following assumptions:

 The longitudinal speed xv of the truck has small variation;

 Due to the stiff connection on the roll dimension, the roll

 4

angle of the tractor and semitrailer are the same;

 The pitch and vertical motion are weakly coupled with the

lateral, yaw and roll motion, and are ignored in the model;

 The angles are small and therefore the dynamics can be

approximated by a linear model.

The simulations performed later in TruckSim support that these

assumptions are satisfied in a highway lane keeping scenario.

Remark 2: The methods developed in this paper, including the

CBF synthesis, the trajectory optimization, and the continuous-

hold controller, all apply to nonlinear models. Hence, for the

remainder of the paper, we denote the model as in (1).

D. The virtual constraint for the truck model

We select the lateral displacement with preview as the output

for feedback linearization:

   0: xz h x y T v   (14)

with 0T being the preview time, as shown in Fig. 5.

Fig. 5. Preview deviation as output

The output z so-defined has relative degree 2 for any dr , i.e.,

1

0, 0
d dg f rg gh h  , (15)

To be more specific, the output dynamics is

 

1

1

2

,

,

.

d

d

df g

f g f f g d

h x

h h

z h h u h

r

r

z

z 





  





 (16)

By A-1, dr changes slowly compared to the dynamics,

therefore, dr is omitted. Since there are eight states but only z

and z are used in the feedback linearization, six dimensions of

the state space are hidden. It is shown that the zero dynamics of

the system is exponentially stable, see Section A in the

appendix for detail. Since 2  , the feedback structure in (11)

is essentially a PD controller:

 

   
   

1

2

1
,

d

p des d des

g f f f g d

K z h K z h
u

h x h x h x r

    
  
  

 (17)

 where pK and dK are the PD gains.

At this point, specifying the desired performance of the truck

is simplified to designing desh , the desired trajectory of the

output z , which is discussed in Section IV.

Remark 3: If smooth steering angles are desired, the control

design model can be augmented with an integrator appended to
u . In this case, the system has relative degree three and the

control design is nearly the same.

III. SYNTHESIS OF CONTROL BARRIER FUNCTION

In this section, we review some existing results for CBFs and

present the synthesis process of a CBF for LK control of a truck.

A. Overview of Control Barrier Function

 Control barrier functions were first proposed in [1] in a

reciprocal form and a zeroing CBF was subsequently

introduced in [24], which is more robust than the reciprocal

form. A zeroing CBF is a scalar function  b x of the state x that

is positive in the safe set, and negative in the danger set. The

algebraic set   | 0x b x  is called the boundary of the CBF.

For a zeroing CBF, the barrier condition can be written as

   0b b  , (18)

where 0  is a positive constant, and  is an extended class

function, that is, a function :f  satisfying

 f is strictly increasing;

  0 0.f 

 When   0b x  , b can be negative, but is lower bounded by

 b ; at the boundary, b should be nonnegative, which

makes the set   0|x b x  controlled invariant. When

  0b x  , the condition in (18) enforces convergence to the set

 | () 0x b x  by setting a lower bound   0bb    .

B. Synthesis of CBF using Sum of Squares programming

The synthesis of a CBF is nontrivial. We use the Sum of

Squares (SOS) technique to synthesize a CBF for the truck LK

problem.

SOS has been widely used in the computation of invariant

sets and barrier certificates for continuous dynamic systems,

and it can be efficiently solved with semidefinite programming

(SDP). In addition, with the help of Putinar’s PositivStallensatz,

SOS condition is enforced on semialgebraic sets via multipliers

[25]. For more information, see [2, 26-31].

We focus on a dynamic system with the control affine

structure in (1), where the dynamics assumed to be polynomial

and , are known semialgebraic sets:

      | 0 , | 0u du h u d h d    . (19)

To make the notation compact, let      1 2,d d dg x g x g x    ,

 1 2,
T

d d d . In CBF synthesis, we set  b b  , and seek a

polynomial CBF  b x that satisfies the following:

   0 ;dx b x X  ∣ (20)

  

      

.0 , , .,

0,d

s t

db
f x g x u g x

x x b x d u

bd
dx



      

 

∣

 (21)

where dX is the danger set, a semialgebraic set of x :

   | 0d xdX x h x  , (22)

0  is a positive constant, and condition (21) is referred to as

 5

the CBF condition.

The difference between a barrier certificate and a CBF shows

up in condition (21), which depends on the control input, u. The

existential quantifier of u renders (21) not directly solvable by

current SOS solvers and thus we seek a conservative

approximation, in which we assume the control input u comes

from a polynomial controller of x and d , namely,

  

    

  

          

0 ;

0 , ;

0 ,

,

0,

,

.d

dx b x X

x x b x

x x b

u x d

db
f x g x u x d g x d

d

x d

b x
x



   

   

    

 

∣

∣

∣ (23)

The input may depend on measured disturbance, but not on

unmeasured disturbance.

Even with the simplification, there are two bilinear terms that

must be addressed to make the problem solvable by SOS. The

first bilinear term is between  b x and  ,u x d . We use bilinear

alternation [2, 32], which iterates the following two steps [2]:

 Fix the barrier candidate, search for a controller;

 Fix the controller, search for a better barrier candidate.

The following SOS program solves for a controller with a

fixed  b x :

            

              

       

 

1 2

3

4

1 2 3 4

min

, , , ,

, ,

, , ,

, , , , ,

. .

i i

u d

i

d

i i

d

i

h u x d s x d b x s x d h d x d

db
f x g x u x d g x d b x s x d b x

dx

s x d h d eQ x d x d

s s s s d

t

x

e s



  

   

  







 (24)

where 1s , 2s , 3s , 4s are the SOS multipliers. Q is a fixed SOS

polynomial of x and d ; e is a relaxation scalar variable that

makes this SOS program feasible. When 0e  , (24) is a

sufficient condition of (23). 3s is used to enforce the CBF

condition only when () 0b x  . The first SOS constraint

restricts the input to be bounded by ; the second SOS

constraint enforces the CBF condition.

Remark 4: The choice of Q depends on the order of the

polynomial required to be SOS. In many cases, Q can simply be
Tx x .

The other step of the bilinear alternation searches for a better

CBF candidate with the controller held fixed. In this step, the

second bilinear term emerges. Because the CBF condition is

enforced only when   0b x  , an SOS multiplier is used to

enforce this condition, which creates a bilinear term between b

and the multiplier. We use perturbation to solve this bilinear

term. The idea is to enforce the CBF condition inside the 0-level

set of the current CBF candidate 0b , and search for a small

perturbation b , as shown in (25).

         

 
           

           

   

0 1

0

2 3 0

1 2 3 0

,

, , , ,

min . .

, , , , .

i i

xd

i

d

i i

d

i

b x b x s x h x x

d b b
f x g x u x d g x d b b x

dx

s x d h x s x d b x eQ x d x d

s x s s x

t

d b b

e s



    

 
    

   

   





 (25)

The norm is taken on the coefficient of b and 0b for some

selected monomial bases. Note that the CBF condition is

enforced on the zero level set of 0b rather than b which makes

the bilinear term disappear (since 0b is fixed and not part of the

SOS variables). Because of this, we need the zero level set of

0b b  to be similar to that of 0b , which is enforced by the last

constraint, with 1 0 , a constant that keeps b small

compared to 0b . The algorithm iteratively updates 0b by

0b b  until no further progress can be made. Upon

convergence, that is, 0b  , the original CBF condition is

enforced.

Fig. 6. Synthesis of a CBF via SOS

In summary, there are two loops in the algorithm. The inner

loop iterates the perturbation process, updating 0b with 0b b 

while the outer loop iterates between updating b and updating

()u  . Denote the optimization in (24) as    (),u e b
u

OPT  ,

with b as input, ()u  and e as output; and denote the

optimization in (25) as    , (),e bb u
b

OPT   , with  b x and

()u  as input, b and e as output. The iteration terminates when

 6

a valid CBF is found or no improvement can be made, as shown

in Fig. 6. Some key parameters for the CBF of lane keeping are

listed in TABLE I.

TABLE I LIST OF PARAMETERS

xv 20 /m s

Bound on y 0.3m

Bound on  0.1rad

Bound on dr
0.02 /rad s (turning

radius of 1000m)

Bound on yF 2000N

Bound on f 0.2rad

IV. TRAJECTORY OPTIMIZATION

Although a CBF guarantees safety of the system’s

trajectories, the closed-loop performance could be

compromised if the student controller is not properly designed.

For example, in Fig. 15 we show a student controller designed

with LQR requiring frequent interventions from the CBF and

thus leading to bad ride comfort. In this chapter, we present an

optimization procedure that incorporates the CBF condition,

which is then used to train a student controller that is compatible

with the CBF. In addition to the CBF condition, other

constraints are needed to ensure the stability of the continuous

hold controller, as introduced later in Section V.A.

A. Direct Collocation

As discussed in Section II, the trajectory optimization is

boiled down to the optimization of desh , the desired trajectory

of the output z . Direct collocation is used to generate the

trajectory of the states and desh , while desh is imposed as the

virtual constraint.

Direct collocation is widely employed in trajectory

optimization problems due to its effectiveness and robustness

and is capable of enforcing nonlinear and nonconvex

constraints. It is thus chosen to optimize the trajectory while

enforcing the virtual constraint. It works by replacing the

explicit forward integration of the dynamical systems with a

series of defect constraints via implicit Runge-Kutta methods,

which provides better convergence and stability properties

particularly for highly underactuated dynamical systems. The

result is a nonlinear programming problem (NLP) [33].

In this paper, we utilize a modified Hermite-Simpson scheme

based direct collocation trajectory optimization method [34].

Particularly, the flow (a.k.a. trajectory),  x t , of the continuous

dynamical system in (13) is approximated by discrete value ix

at uniformly distributed discrete time instant

0 1 20 Nt t t t T      with 0N  being the number of

discrete intervals. Let ix and ix be the approximated states and

first order derivatives at node i , they must satisfy the system

dynamic equation given in (13). Further, if these discrete states

d Bezier curve can parameterize trajectories of any finite length by scaling the

input. Suppose the horizon of desh is T , then the input is defined as /s t T .

satisfy the following defect constraints at all interior points

 1,3, , N 1i  ,

   

   

1 1 1 1

1 1 1 1

3 1
: 0,

2 4

1
: 0,

2 8

i i i i i i

i i i i i i

N
x x x x x

T

T
x x x x x

N





   

   

     

     

 (26)

then they are accurate approximations of the given continuous

dynamics. (26) defines the modified Hermite-Simpson

conditions for the direct collocation trajectory optimization

[34].

Based on the above formulation, now we can construct a

constrained nonlinear programming problem to solve the

trajectory optimization with the virtual constraint for the

articulated truck model. To incorporate the virtual constraints

based feedback control with the trajectory optimization, we

enforce the output dynamics equation given in (16) at each

node. Then the control input iu will be implicitly determined

via this constraint without explicitly enforcing it as in (17).

Further, the output z and its derivative z should equal to the

desired trajectory  desh t at 0t  to ensure that the system lies

on the zero dynamics manifold  0,t T  .

The desired trajectory desh is parameterized as Bezier curve,

which is widely used in computer graphics and related fields. A

Bezier curve of order m is an m-th order polynomial defined on

 0,1 :

    
0

1
m

m ii

i

i

m
s s s

i
B 





 
  

 
 , (27)

where i are the Bezier coefficients. d The Bezier order is

chosen to be 8.

Let   be the cost function to be minimized, the trajectory

optimization problem can be stated as:

 

     

       
 

 

 

 

       

    

1 1

0

0

0

0

0

0

max max

()

()

0

1 1 1

2 3

arg min . .

0, 0,

,

0,

,

0,

0,

,

1
, 0,

1

,

,

i

i

i i

i i i i i i

d

i i

des i p des i d des i

des

des

i

b x
i i

b x

x x

s t

x f x x g x u g x d

z h t K z h t K z h t

x t x

z h t

z h t

u u u

e
b x x

e

V x T d c V x d

x T x T c

 



 





 

  

     



 

 

  


 



  

 

 (28)

where  i iz z x ,  i iz z x , and  ,i i iz z x x , respectively.

The first 3 lines of constraints correspond to the colocation

 7

constraint; 4th line specifies the initial states; 5th and 6th line

correspond to the virtual constraint; the 7th line is the input

constraint; the 8th line is the CBF constraint, the last two

constraints are needed to guarantee stability of the continuous

hold controller, which will be explained in Appendix Section

B.

Remark 5: The CBF condition is modified based on (18). Since

1

1

b

b

e

e




is bounded within  1,1 , when  b x is small, the lower

bound for b saturates at 1, instead of growing linearly as b

, which may be too difficult to satisfy. Besides, when   0b x  ,

1
0

1

b

b

e

e





, which resembles the original CBF condition in (20).

Since
1

1

b

b

e

e




 is still an extended class function, by

Proposition 1 in [35],   0|x b x  is still invariant under the

modified constraint.

The cost function in (28) is a weighted sum of multiple cost

functions, consisting of the following terms:

 Final value cost   T

x dV x r , where  x dr is the

steady state under a given dr , and ()V  is a Lyapunov

function around the origin.


2z dt , the square integral of z


2z dt , the square integral of jerk

 y


, the maximum deviation from road center

 r


, maximum yaw rate


2u dt , the square integral of the input

 m ，penalty on the last Bezier coefficient (facilitate

convergence of the Bezier curve)

The terms that consist of function integrals are approximately

computed using the Simpson’s quadrature rule [36].

The setting of the constraints and costs seem complicated,

they are the result of repeated trial and tuning. It should be

emphasized that CBF constraint is enforced in the trajectory

optimization. We hope that by enforcing CBF condition on the

training set, the policy generated by supervised learning inherits

this property.

Fig. 7. Example of trajectory optimization result

Fig. 7 shows an example trajectory with initial lateral

deviation 0 0.5y m and road yaw rate 0.02 /dr rad s . The

plot of y and the Bezier output z shows that the trajectory is

converging to the lane center. The plot of the CBF value and

the control input shows that the trajectory generated by direct

collocation satisfies the input and CBF constraints.

The trajectory optimization is solved with FROST, which

uses a symbolic calculation to boost the nonlinear optimization

[37]. The trajectory optimization for each initial condition can

be finished within 10 seconds.

B. Generating the training set

It is impossible to perform trajectory optimization for all the

initial conditions offline, so instead, we use supervised learning

to train the mapping from initial conditions to desired

trajectories with a finite trajectory library, which is generated

by the above-described trajectory optimization process.

By varying the initial conditions and generating the

corresponding trajectories with direct collocation, we hope to

‘train’ the neural network to generate good trajectories for

various initial conditions. The inputs to the neural network are

called features, denoted as ; in our case, they are variables

that describe the initial condition. The output of the neural

network is a vector of control parameters, denoted as , in this

case, the Bezier coefficients.

 :  . (29)

The selection of initial conditions is done in a grid fashion. We

define a grid on the feature space and perform trajectory

optimization on each of the grid points. Since the zero dynamics

is stable,    desz t h t for
2

desh C implies    desx t x t ,

where desx is the desired state trajectory corresponding to desh .

This implies that we only need two states to determine the

asymptotic behavior of the system, but not necessarily the

transient behavior. In practice, the more states we use to

parameterize the initial condition, the finer the trajectory library

will be.

However, under a grid fashion of drawing samples, the

number of samples needed grows exponentially with the state

dimension. Therefore, the dimension of  is limited by

available computation power. We let  contain 6 features,

including 5 states and dr :

 , , , , ,a y dy r v r      . (30)

Under this setup, the computation needed to generate the

trajectory library is manageable (about 20 hours on a desktop).

With more computation power, a higher dimensional  can

lead to a finer trajectory library.

Even though most driving behavior is mild, it is important

that the controller be able to handle bad initial conditions. We

generate, therefore, two training sets, denoted as 1S and 2S ,

where 1S consists of trajectories defined for a duration of 1

second, and the features of the trajectories have a wider span,

and 2S consists of trajectories defined over a 3 second window,

with the features more concentrated around the origin. 1S is

used to train a mapping for severe initial conditions and

 8

transients, and 2S is used to train a mapping for mild situations

and normal driving. Some of the initial conditions might render

the trajectory optimization infeasible, therefore only the

feasible cases are included in the training sets. In the

implementation, the CH controller will choose which mapping

to use based on the severity of the situation.

TABLE II TRAINING SET PARAMETER SETTING

Feature 1S 2S

y range  0.0.5,]5 [m  0.3, 0.3 [m]

yv range  1, [1 m/ s]  1, [1 m/ s]

 range  0.04, 0.04 []rad  0.04, 0.04 []rad

r range  0.06, 0.06 [/]rad s  0.03, 0.03 [rad/ s]

dr range  0.03, 0.03 [/]rad s  0.025, 0.025 [/]rad s

a range  0.04, 0.04 []rad  0.04, 0.04 []rad

The parameters for the training are included in TABLE II. In total,

there are 62825 trajectories in 1S , and 29300 trajectories in 2S .

C. Supervised learning

With the training set ready, there are several choices for the

supervised learning, such as linear regression, Gaussian process

regression, and neural networks. In our problem, since there is

no structural information about the trajectory generator and we

need strong expressive power to capture the potentially

complicated mapping from the initial condition to the desired

trajectory, we choose a neural network for its strong expressive

power.

We train a neural network that has 6 hidden layers with 200

neurons in each layer and use the ReLU function as the rectifier.

The training is performed using Tensorflow [38]. 85% of the

data is used for training and 15% is used for testing. TABLE III

shows the mean squared error (MSE) of the training result.

TABLE III TRAINING RESULT

 1S 2S

MSE of training data 0.13 0.0023

MSE of testing data 0.16 0.0024

V. IMPLEMENTATION OF LEARNING BASED CONTROLLER

A. Continuous hold feedback control

Once the trajectory generator is trained, we can generate a

finite horizon desired trajectory for a given initial condition. In

order to piece together the finite horizon trajectories and

synthesize a controller from the trajectory generator, we employ

a continuous hold (CH) controller. The name continuous hold

comes from the analogy with a zero-order hold and an n-th

order hold. While an n-th order hold approximates the segment

between two consecutive sampling times with an n-th order

polynomial, continuous hold executes a predefined continuous

trajectory.

 The idea of continuous hold is not claimed to be novel; a

motion primitive is a special type of continuous hold [39]. The

trajectory is updated in an event-triggered fashion, which will

be discussed in detail in Section V.B. While event-triggered

finite-horizon control is studied in [40], in the CH setting, it

should be noted that the control action between triggering

events is a continuous function of time and states instead of

being a constant.

For the truck example, the basic continuous hold controller

[41] must be extended to systems with exogenous disturbances.

The stability and set invariance property of the CH controller

are proved, including the analysis for the case when only a

subset of the state is used for feedback, in Appendix Section B.

B. Event-triggered update of the CH controller

The CH controller uses the mapping trained by supervised

learning to generate a desired trajectory desh for the output z

based on the current state and dr , then track the desired

trajectory with the control law in (17). The desired trajectory

will be updated under three circumstances:

 The desired trajectory is executed to the end

 There is a significant change in road curvature

 The trajectory tracking error becomes large

In the first case, since the trajectory optimization has a finite

horizon (1s or 3s), the neural network will use the current value

of the features to generate a new desired trajectory. In the

second case, if the road curvature dr differs much from that

used to generate the current desired trajectory, the trajectory

should be updated since dr is assumed to be constant during the

entire horizon of the trajectory. The rest of the features are

simply initial conditions, so their change does not trigger an

update of the desired trajectory. In the third case, when the

trajectory deviates too far from the desired trajectory, re-

planning is called for. This is likely to be caused by an

unexpected disturbance, such as wind gust.

When switching from one trajectory to the next, smoothing

is performed to make sure that desh is twice differentiable,

which ensures that the control signal is continuous. The

smoothing process is explained in the Appendix Section C.

C. CBF as a supervisory controller

Even though the CBF condition is enforced in the trajectory

optimization used in the training set, after supervised learning,

there is no guarantee that the trajectory generated by the neural

network always satisfies the CBF condition. Therefore, CBF is

still implemented as a supervisory controller on top of the CH

controller, as shown in Fig. 2. The CBF solves the following

optimization:

 0

2 2

1 2

0

min

. , , 0. , ,

old
u

u u u

x d

w w

uu us ut


  

    




 (31)

where u is the intervention of the CBF, oldu is the

intervention of the previous time instant,   is the CBF

condition. The reason for the second penalty term is to prevent

chattering if intervention is necessary. The CBF condition is

defined as

 

 

0, 0

1
0, 0

1

b

b

b if b x

b if b x

b

e

e





 



 

 








, (32)

 9

where the transition at   0b x  is continuous, i.e. the two

constraint coincides at   0b x  .

Fig. 8. lower bound for b

Remark 6: When   0b x  , the existence of u is guaranteed

by the construction of the CBF; when   0b x  , there is no

guarantee of feasibility. When (31) is infeasible, the input is

saturated by .

VI. SIMULATION RESULT

We validate our control design on TruckSim, a high fidelity

physics-based simulation software that is widely acknowledged

by the trucking industry. The model picked for simulation has

312 states and is a tractor-semitrailer with heavy cargo in the

trailer, weighing 35 tons in total; see Fig. 9.

Fig. 9. Animation with a 312 state model in TruckSim

The truck is asked to drive on a road with a minimum turning

radius of 1000 m at 20m/s. A side-wind is simulated as a lateral

force and roll moment to the truck. Because of the heavy cargo,

the truck has a high CG. Hence, the roll motion in the simulation

is significant and the commanded maneuvers are aggressive.

Fig. 10. Disturbance to the system

As shown in Fig. 10, the road profile consists of segments

with constant curvature (per US road design standards) Though

rather extreme, the side-wind is a square wave with maximum

allowed magnitude.

Fig. 11. Value of the CBF and key states during simulation

Fig. 11 shows the value of the CBF and two key states.

Lateral deviation y and roll angle  never exceed the desired

limits (plotted in red) and  b x was always above zero,

showing that the CBF (safety) bound was never breached.

Fig. 12. Input and intervention of CBF during simulation

The steering input trajectory is shown in Fig. 12. We zoom

in the input to show a 5 second period of input. The input is

actually reasonably smooth. The bumps are necessary to

counter the side-wind when it changes direction. The lower plot

shows f , and its constant value of zero indicates that no

interventions from CBF occurred.

To demonstrate the controller’s ability to handle bad initial

conditions, we perturb the lateral deviation with a square wave,

simulating the situation when the initial position is 0.5m from

the lane center, as shown in Fig. 13 and Fig. 14.

Fig. 13. Value of CBF and key states with large initial

deviations

 10

Fig. 14. Input and intervention of CBF with large initial

deviations

Fig. 14 shows the input under a large deviation. The CBF

intervened 3 times, and the interventions are mild compared to

the size of 0u . When  b x was below zero, the learned

controller was able to drive the system back to the safe set

without the intervention of the CBF.

As a comparison, we tuned an LQR controller with

feedforward control of dr , and it performed very well under

normal driving conditions. However, when the initial condition

is bad (under the same setting as Fig. 13), the LQR controller

triggered intervention from the CBF multiple times (11 times)

and the jerk was severe, as shown in Fig. 15.

Fig. 15. Simulation result with LQR as student controller

Though the LQR controller was fine-tuned, it triggered

severe intervention from the CBF frequently. On the other hand,

we observed none or very mild interventions from the CBF

under the learning-based controller in all trial simulations when

the states are within the span of the training set.

VII. CONCLUSION AND DISCUSSION

We propose a supervised learning approach to construct

controllers with smooth performance and a provable safety

guarantee. The idea is to use trajectory optimization to generate

a training set consisting of trajectories that satisfy a Control

Barrier Function (CBF) safety constraint, then use supervised

learning to extract a mapping from system initial conditions to

desired trajectories. The policy generated with supervised

learning inherits the good properties of the training set, though

nothing can be proved. On top of that, a safety guarantee is

formally imposed with a CBF as a supervisory controller. The

simulations showed that the proposed approach is able to reduce

the intervention of the CBF and therefore provide high-quality

closed-loop performance while guaranteeing safety.

We chose to learn a mapping from initial conditions to the

desired output trajectory, instead of a mapping from the initial

condition to the desired input trajectory. Trajectory tracking

was implemented with a continuous-hold (CH) controller. The

CH control structure is able to transform the synthesis problem

into a trajectory optimization problem, which may be much

simpler for complicated nonlinear systems such as trucks and

robots [41].

There are problems to be solved for the proposed method.

First, when the initial condition is not contained inside the

feature range of the training set, i.e. when the neural network is

doing extrapolation rather than interpolation, the performance

can be poor. Though rather obvious, it is important to

emphasize that to obtain good performance over a wide range,

one needs to have training data with adequate coverage. Second,

when training data from a large range of features are stacked

together, the regression accuracy may drop and the performance

suffers. To solve this, one might need more a complicated

neural network structure, or use multiple neural networks for

different situations.

ACKNOWLEDGMENT

The work of Yuxiao Chen, A. Hereid, and Huei Peng is

supported by NSF Grant CNS-1239037. The work of J. Grizzle

is supported by Toyota Research Institute (TRI).

APPENDIX

A. Zero dynamics of the truck lateral dynamics

To show the zero dynamics, we use the following state

transformation that renders a new choice of states:

T

TT z z      , (33)

where T is a full-rank linear transformation matrix:

0

0

4 2

6 2

8 2

1 0 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0

x

x x

v T

v v T

B B
T

B B

B B

 
 
 
 
 

 
 
 

 
 
 

  

, (34)

and iB is the i-th entry of B in (13). The transformation is linear

and full rank. The dynamics under  is

dA Bu Er    , (35)

Moreover,

  1 60
T

B TB CAB   0 , (36)

where  0 1 51 0 xC T v  0 .Therefore, the dynamics under

 can be written as

 

1

6 1 6 1

2

0 0

, ,

d

z z

CA

z z u r

z CAB CAx E

0 0 



       
      

        
        





   

, (37)

 11

where  , ,z z has exponentially stable zero dynamics,

meaning  ,0,0   is exponentially stable.

B. Analysis of the continuous hold controller

In this section, we present the stability and set invariance

analysis of the continuous hold (CH) controller.

B.1 CH controller with full state parameterization

Systems of the following form are considered:

  , ,x f x u d , (38)

where x , u and d are the state, the input and the measured

disturbance respectively.

Remark 7: The result about the CH controller is applicable to

general nonlinear dynamic model; the control-affine nonlinear

model in (1) (assuming 2 0d ) and the linear model of the

truck are special cases.

We make the following assumptions about the system

dynamics.

A-5: : n m p nf    is locally Lipschitz continuous in

x , u and d .

A-6: p  and mappings : n

x  , : p

u  ,

Lipschitz continuous, such that     , , 0x uf d d d   , i.e.,

for every exogenous disturbance d , there exist two

mappings x and u that map any d to a unique

equilibrium point and a unique input that maintains the

equilibrium.

Remark 8: There may be non-unique equilibrium points of the

system due to the cyclic coordinates, i.e., states that do not

affect the dynamics, see [42] for detail. Therefore, a function

x is needed to select a single equilibrium point given d . A-3

gives a possible definition of x .

A-7: d  , there is an open ball
n

dB  about the origin,

and a positive-definite, locally Lipschitz-continuous function

:d dV B  , and constants 1 20    such that

 d xx B d   ,

 

 1 2

,

.

x

T T

d

x x d

x x V x x x



 

 

 
 (39)

A-8: n  , compact, such that  , xd d   . There

exists CBF ()b x , such that  , 0x b x   ; ,d 

   0xb d  . Moreover, , d    , there exists

: 0,d m

pu T
    and a corresponding state trajectory

: 0,d n

pT     satisfying

         

 

    

 
   

 
   

1 0

0

0, , lim , lim ,

d

x x

d d

d p x d x

d d

t

d d

p x u
d d

V T d c V d

db
t b t

dx

t T t d u t d



 

 



 
   

   

  

  
 

  

 

     

 (40)

where 0pT  is the horizon, 0  , 11 0c  are predefined

constants.

A CH controller maintains a timer t̂ that is reset to 0 when

the triggering event occurs and the desired trajectory is updated.

In between events, the timer increases at a constant rate equal

to 1. An update is triggered when either the trajectory is

executed to its end, i.e. ˆ
pt T , or when an interruption is

detected. A possible interruption includes a change in d or an

unexpected disturbance that makes the tracking error too big.

The CH input is

   ˆ ˆ ˆ(, ,) () ,CH d fb du t x d u t u x t   , (41)

where is the initial state when ˆ 0t  , and :fb n n mu  

is a feedback controller that tracks
d

 .

The closed-loop system under CH feedback is then

      ,ˆ ˆ ˆ, (: , ,) ,CH d fb dx f x d f xt u t u x t d   . (42)

A-9: For any trajectory
d

 in A-8 that a CH controller tries to

follow, there exists a feedback controller :fb n n mu  

that makes
d

 uniformly locally exponentially stable, i.e., the

closed-loop system in (42) satisfies

    

         2 2 1

1 2 1 1

2 2 1 1

, . . 0 , ,n d

p

c t td d

B s t t t T x t t B

x t t e x t t



 



 
 

       

  
 (43)

for some 2 0c  .

Next, we present the result on the stability property of the CH

controller. First, consider the case when d is fixed.

Theorem 1: Under assumptions A-5, A-6, A-7, A-8, and A-9,

for an initial condition   | 0x b x   the closed-loop

system in (42) will stay inside   | 0x b x  , and if d stops

changing after 0T  , the state will converge to  x d

exponentially.

Proof: From A-8, since   | 0x b x   ,   , which means

the feedback control in (41) is well defined. From (40), the CBF

 b x remains nonnegative as discussed in Section III, which

proves that the state will stay inside   | 0x b x  , and thus

  , 0x t t   .

When d stops changing, from the Lyapunov condition in A-

8,          1

1 0n

d p x d xV x nT d c V x d    , 1,2,3,...n  ,

which implies   lim 0d p
n

V x nT


 . From A-7, the sequence

 px nT converges to  x d . Therefore, from the last

assumption in (40), the state stays at  x d .

 12

B.2 State decomposition and dimension reduction

As discussed in Section IV.B, under a grid fashion sampling

of the initial condition, the computation power limits the

dimension of the feature that describes the initial condition. To

parameterize the initial condition with a subset of states, we

decompose the states into two parts:  1 2;x x x , where in

practice 1

1

n
x  are states with slow dynamics and 2

2

n
x 

are states with fast and stable dynamics. We consider the case

where the trajectory and tracking feedback fbu are

parameterized by only 1x .

Definition 1: A locally Lipschitz continuous function
1 2:

n n  such that  0 0  and satisfies

     

    

1 2

2 1

, ; ,x x x

x x

d d d d

d d

  

  

     


 (44)

is called an insertion map.

The condition in (44) states that for any d , the insertion

map maps the steady state of 1x to the steady state of 2x . To

extend the previous conclusion to cases where trajectories are

parameterized with only 1x , we make the following

assumptions.

A-10: n  , compact, such that  , xd d   .

There exists CBF ()b x , such that.  , 0x b x   ;

  , 0xbd d   ;  1 2, ; ,d        2 1 ,  

with 1 0c  , there exists
1

: 0,d m

pu T
    and a

corresponding state trajectory,
1

: 0,d n

pT     satisfying

         

 
   

1 1

1 1
1

0 ,

| 0,d

d d

d p x d x

d d

t

V T d cV d

db
t t

dx 

 

 

   

 

  

 
 (45)

   

   

   
   

1 1

1 1

,

,

lim ,

lim ,

x

x

d

x
d

d

u
d

t d

u t d


   


   

 



  

  




 (46)

     
1 12 1

d d

p pT T    . (47)

A-11: There exists a feedback 1 1

1 :
n nfb mu   that

  
11 1 1

ˆ,fb du x t makes
1

d

 uniformly locally exponentially

stable, i.e. (43) is satisfied with       
11 1 1

ˆ ˆ ˆ,d fb du t u t u x t   .

Remark 9: The subscript
11

d

 means the desired trajectory of

1x with initial condition  1 10x  , and
12

d

 means the desired

trajectory of 2x ,
1 1 11 2;d d d

        . A-11 is possible if the

dynamic subsystem of 2x is locally exponentially stable.

Theorem 2: Under A-5, A-6, A-7, A-10, and A-11, d  ,

    1 1; | 0x b x         , the closed-loop system under

CH feedback will stay inside   | 0x b x  , and if d stops

changing after some 0T  , the state will converge to  x d

exponentially.

Proof: By A-11, the closed loop system exponentially

converges to the CH desired trajectory. From A-10, by CBF

condition,   | 0x b x  is invariant under the CH controller.

When d stops changing, the closed loop system exponentially

converges to
d

 and        1n

d p x d xV x nT d c V d     ,

for 1,2,3,...n  , and satisfies     2 1p px nT x nT . So every

time the desired trajectory is executed to the end, there exists

 1 p

d

x nT
 that follows the previous trajectory. By definition of the

insertion map, (44) makes sure that when  1

1 xx d ,

   2

1 xx d  . By (46),  x t converges to  x d

exponentially.

Remark 10: When the dynamics of 2x is stable and fast,

12 2:y x   converges to zero quickly, the influence of initial

condition of 2x is small enough to be neglected. Therefore, the

CH can be parameterized only by 1x .

Now consider a CH controller with trajectories generated

with the procedure described in (28). A-5 and A-6 are trivially

satisfied by the linear dynamics, where x is defined such that

it maps dr to the equilibrium point that renders   0z h x  ,

which is unique. It can be shown that x is Lipschitz

continuous. We use the cost-to-go function V of a Linear

Quadratic Regulator (LQR) as the Lyapunov function by

solving the Riccati equation. SinceV is quadratic, and the truck

dynamic is linear, V satisfies A-7 for all dr . The CBF condition

and Lyapunov condition in A-10 are enforced in the trajectory

optimization by the last two constraints in (28). Pick

1 4 2y ax z z B v B r      , since z and z are part of

1x , the closed loop dynamics is indeed stable under the PD

control that only depends on 1x , which is the direct result of a

stable zero dynamics, therefore satisfies the exponential

stability condition in A-11. Note that the initial conditions in

the training set are parameterized by , which is a full rank

linear transformation of 1x and dr . By Theorem 2, the closed-

loop system with CH feedback stays within   0|x b x  , and

converges to  x d exponentially once dr stops changing.

C. Smoothing of the desired trajectory

The smoothing of a Bezier curve is very simple. For an m-th

order Bezier curve, the value for 0th to 2nd derivative at 0s  are

 

 

    

0

1 0

2 0 1

0 ,

' 0 ,

'' 0 1 2 .

m m

m m

B

B

B



 

  



 

   

 (48)

 13

Solving for 0 , 1 and 2 :

 

0

0

0

1 0

0

2 1 0

,

,

2 ,
1

des

des

des

h

h

m

h

m m



 

  



 

  


 (49)

where
0

desh , 0

desh and 0

desh are the value and derivatives of the

desired trajectory before the update. The smoothing process

requires that the Bezier order should be high enough so that the

influence of the smoothing is limited to only the beginning of

the curve. We choose the Bezier order to be 8.

REFERENCES

[1] A. D. Ames, J. W. Grizzle, and P. Tabuada, "Control barrier

function based quadratic programs with application to adaptive

cruise control," in 53rd IEEE Conference on Decision and Control,
ed: IEEE, 2014, pp. 6271-6278.

[2] X. Xu, J. W. Grizzle, P. Tabuada, and A. D. Ames, "Correctness

Guarantees for the Composition of Lane Keeping and Adaptive
Cruise Control," arXiv preprint arXiv:1609.06807, 2016.

[3] S.-C. Hsu, X. Xu, and A. D. Ames, "Control barrier function based

quadratic programs with application to bipedal robotic walking," in
American Control Conference (ACC), 2015, 2015, pp. 4542-4548.

[4] Y. Chen, H. Peng, and J. Grizzle, "Obstacle Avoidance for Low-

Speed Autonomous Vehicles With Barrier Function," IEEE
Transactions on Control Systems Technology, 2017.

[5] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, "Control barrier

function based quadratic programs with application to automotive
safety systems," arXiv preprint arXiv:1609.06408, 2016.

[6] H. Gomi and M. Kawato, "Neural network control for a closed-loop

system using feedback-error-learning," Neural Networks, vol. 6, pp.
933-946, 1993.

[7] X. Da, R. Hartley, and J. W. Grizzle, "Supervised learning for

stabilizing underactuated bipedal robot locomotion, with outdoor

experiments on the wave field," in IEEE International Conference

on Robotics and Automation (ICRA), 2017, 2017, pp. 3476-3483.

[8] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P.
Goyal, et al., "End to end learning for self-driving cars," arXiv

preprint arXiv:1604.07316, 2016.
[9] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, "End-to-End

Deep Reinforcement Learning for Lane Keeping Assist," arXiv

preprint arXiv:1612.04340, 2016.
[10] S.-Y. Oh, J.-H. Lee, and D.-H. Choi, "A new reinforcement learning

vehicle control architecture for vision-based road following," IEEE

Transactions on Vehicular Technology, vol. 49, pp. 997-1005, 2000.
[11] D. Bertsekas, Dynamic programming and optimal control vol. 1:

Athena Scientific Belmont, MA, 1995.

[12] J. H. Gillula and C. J. Tomlin, "Guaranteed safe online learning via
reachability: tracking a ground target using a quadrotor," in IEEE

International Conference on Robotics and Automation (ICRA),

2012, 2012, pp. 2723-2730.
[13] A. K. Akametalu, J. F. Fisac, J. H. Gillula, S. Kaynama, M. N.

Zeilinger, and C. J. Tomlin, "Reachability-based safe learning with

Gaussian processes," in 2014 IEEE 53rd Annual Conference on
Decision and Control (CDC), 2014, pp. 1424-1431.

[14] N. Smit-Anseeuw, R. Vasudevan, and C. D. Remy, "Safe Online

Learning Using Barrier Functions."
[15] F. Berkenkamp and A. P. Schoellig, "Safe and robust learning

control with Gaussian processes," in 2015 European Control

Conference (ECC), 2015, pp. 2496-2501.
[16] A. Isidori, Nonlinear control systems: Springer Science & Business

Media, 2013.

[17] H. K. Khalil, "Noninear systems," Prentice-Hall, New Jersey, vol.
2, pp. 5-1, 1996.

[18] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, and B.

Morris, "Feedback control of dynamic bipedal robot locomotion,"
ed: CRC press, 2007.

[19] A. Shiriaev, J. W. Perram, and C. Canudas-de-Wit, "Constructive
tool for orbital stabilization of underactuated nonlinear systems:

Virtual constraints approach," IEEE Transactions on Automatic

Control, vol. 50, pp. 1164-1176, 2005.

[20] M. Maggiore and L. Consolini, "Virtual holonomic constraints for

Euler–Lagrange systems," IEEE Transactions on Automatic

Control, vol. 58, pp. 1001-1008, 2013.
[21] J. W. Grizzle, M. D. Di Benedetto, and F. Lamnabhi-Lagarrigue,

"Necessary conditions for asymptotic tracking in nonlinear

systems," IEEE Transactions on Automatic Control, vol. 39, pp.
1782-1794, 1994.

[22] A. J. Miege and D. Cebon, "Optimal roll control of an articulated

vehicle: theory and model validation," Vehicle system dynamics,
vol. 43, pp. 867-884, 2005.

[23] J. Y. Wong, Theory of ground vehicles: John Wiley & Sons, 2008.

[24] X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames, "Robustness of
control barrier functions for safety critical control," IFAC-

PapersOnLine, vol. 48, pp. 54-61, 2015.

[25] P. A. Parrilo, "Semidefinite programming relaxations for
semialgebraic problems," Mathematical Programming, vol. 96, pp.

293-320, 2003.

[26] J. Bochnak, M. Coste, and M.-F. Roy, Real algebraic geometry vol.

36: Springer Science & Business Media, 2013.

[27] P. A. Parrilo, "Semidefinite programming relaxations for

semialgebraic problems," Mathematical Programming, vol. 96, pp.
293-320, May 2003.

[28] G. Stengle, "A Nullstellensatz and a Positivstellensatz in
semialgebraic geometry," Mathematische Annalen, vol. 207, pp. 87-

97, 1974.

[29] A. Papachristodoulou and S. Prajna, "On the construction of
Lyapunov functions using the sum of squares decomposition," in

Proceedings of the 41st IEEE Conference on Decision and Control,

2002, pp. 3482-3487.
[30] S. Prajna and A. Jadbabaie, "Safety Verification of Hybrid Systems

Using Barrier Certificates," in International Workshop on Hybrid

Systems: Computation and Control, Berlin Heidelberg, 2004, pp.
477-492.

[31] S. Prajna, A. Papachristodoulou, and F. Wu, "Nonlinear control

synthesis by sum of squares optimization: A Lyapunov-based
approach," in 5th Asian Control Conference, 2004, 2004, pp. 157-

165.

[32] K. C. Goh, L. Turan, M. G. Safonov, G. P. Papavassilopoulos, and
J. H. Ly, "Biaffine matrix inequality properties and computational

methods," in American Control Conference, 1994, pp. 850-855.

[33] J. T. Betts, Practical methods for optimal control and estimation
using nonlinear programming: SIAM, 2010.

[34] A. Hereid, E. A. Cousineau, C. M. Hubicki, and A. D. Ames, "3D

dynamic walking with underactuated humanoid robots: A direct
collocation framework for optimizing hybrid zero dynamics," in

IEEE International Conference on Robotics and Automation

(ICRA), 2016, 2016, pp. 1447-1454.
[35] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, "Control barrier

function based quadratic programs for safety critical systems," IEEE

Transactions on Automatic Control, vol. 62, pp. 3861-3876, 2017.
[36] J. Stoer and R. Bulirsch, Introduction to numerical analysis vol. 12:

Springer Science & Business Media, 2013.

[37] A. Hereid and A. D. Ames, "FROST*: Fast Robot Optimization and
Simulation Toolkit," 2017.

[38] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, et

al., "Tensorflow: Large-scale machine learning on heterogeneous

distributed systems," arXiv preprint arXiv:1603.04467, 2016.

[39] E. Frazzoli, M. A. Dahleh, and E. Feron, "Real-Time Motion

Planning for Agile Autonomous Vehicles," in Journal of Guidance,
Control, and Dynamics vol. 25, ed, 2002, pp. 116-129.

[40] P. Tabuada, "Event-triggered real-time scheduling of stabilizing

control tasks," IEEE Transactions on Automatic Control, vol. 52,
pp. 1680-1685, 2007.

[41] X. Da and J. Grizzle, "Combining Trajectory Optimization,

Supervised Machine Learning, and Model Structure for Mitigating
the Curse of Dimensionality in the Control of Bipedal Robots,"

arXiv preprint arXiv:1711.02223, 2017.

[42] V. I. Arnol'd, Mathematical methods of classical mechanics vol. 60:
Springer Science & Business Media, 2013.

 14

Yuxiao Chen is a Ph.D. candidate at the

University of Michigan. He received his

Bachelor's degree in Mechanical Engineering

from Tsinghua University, Beijing, China in

2013. His research interests are control theory,

cyber-physical system and particularly the

application of vehicle control.

Ayonga Hereid received the Ph.D. in

Mechanical Engineering from the Georgia

Institute of Technology in 2016. He is currently

a postdoctoral research fellow in the EECS

department at the University of Michigan, Ann

Arbor. His research interests lie at the

intersection of nonlinear control and

optimization theory, with a particular focus on developing

elegant and principled control solutions for complex robotic

systems, including bipedal robots and exoskeletons. He was the

recipient of the Best Student Paper Award in 2014 from the

ACM International Conference on Hybrid System:

Computation and Control and was nominated as the Best

Conference Paper Award Finalists in 2016 at the IEEE

International Conference on Robotics and Automation.

Huei Peng received his Ph.D. in

Mechanical Engineering from the

University of California, Berkeley in 1992.

He is now a Professor at the Department of

Mechanical Engineering at the University

of Michigan. His research interests include

adaptive control and optimal control, with

emphasis on their applications to vehicular

and transportation systems. His current research focuses

include design and control of electrified vehicles, and

connected/automated vehicles. Huei Peng has been an active

member of the Society of Automotive Engineers (SAE) and the

American Society of Mechanical Engineers. He is both an SAE

fellow and an ASME Fellow. He received the National Science

Foundation (NSF) Career award in 1998.

Jessy W. Grizzle received the Ph.D. in

electrical engineering from The University

of Texas at Austin in 1983. He is currently a

Professor of Electrical Engineering and

Computer Science at the University of

Michigan, where he holds the titles of the

Elmer Gilbert Distinguished University

Professor and the Jerry and Carol Levin

Professor of Engineering. He jointly holds sixteen patents

dealing with emissions reduction in passenger vehicles through

improved control system design. Professor Grizzle is a Fellow

of the IEEE and IFAC. He received the Paper of the Year

Award from the IEEE Vehicular Technology

Society in 1993, the George S. Axelby Award in 2002, the

Control Systems Technology Award in 2003, the Bode Prize in

2012 and the IEEE Transactions on Control Systems

Technology Outstanding Paper Award in 2014. His work on

bipedal locomotion has been the object of numerous plenary

lectures and has been featured on CNN, ESPN, Discovery

Channel, The Economist, Wired Magazine, Discover

Magazine, Scientific American and Popular Mechanics.

