
The Ach Library

By Neil T. Dantam, Daniel M. Lofaro, Ayonga Hereid,
Paul Y. Oh, Aaron D. Ames, and Mike Stilman

A New Framework for Real-Time Communication

C
orrect real-time software is vital for robots in safety-critical roles
such as service and disaster response. These systems depend on
software for locomotion, navigation, manipulation, and even
seemingly innocuous tasks such as safely regulating battery volt-
age. A multiprocess software design increases robustness by iso-

lating errors to a single process, allowing the rest of the system to continue
operation. This approach also assists with modularity and concurrency.
For real-time tasks, such as dynamic balance and force control of manip-
ulators, it is critical to communicate the latest data sample with mini-
mum latency. There are many communication approaches intended for
both general-purpose and real-time needs [9], [13], [15], [17], [19]. Typical
methods focus on reliable communication or network transparency and accept a
tradeoff of increased message latency or the potential to discard newer data. By
focusing instead on the specific case of real-time communication on a single
host, we reduce communication latency and guarantee access to the latest
sample. We present a new interprocess communication (IPC) library, Ach
which addresses this need, and discuss its application for real-time multi-
process control on three humanoid robots (Figure 1). (Ach is available at
http://www.golems.org/projects/ach.html. The name Ach comes from
the common abbreviation for the motor neurotransmitter Acetylcholine
and the computer networking term ACK.)

There are several design decisions that influenced this robot soft-
ware and motivated the development of the Ach library. First, to uti-
lize decades of prior development and engineering, we implement our
real-time system on top of a portable operating system interface
(POSIX)-like operating system (OS). (POSIX is IEEE Standard 1003.1 for
a portable OS interface. It enables software portability among supporting
OSs, such as GNU/Linux, MacOSX, Solaris, and QNX. This provides us with
high-quality, open-source platforms, such as GNU/Linux and a wide variety
of compatible hardware and software. Second, because safety is critical for
these robots, the software must be robust. Therefore, we adopt a multi-
ple-process approach over a single-process or multithreaded applica-
tion to limit the potential scope of errors [18]. This implies that the sam-
pled data must be passed between the OS processes using some form of IPC.
Since general-purpose IPC favors older data [19] (see the “Review of POSIX IPC” sec-
tion), while real-time control needs the latest data, we have developed a new IPC library.

This article discusses a POSIX IPC library for the real-time control of physical processes such as robots, describes
its application on three different humanoid platforms, and compares this IPC library with a variety of other com-
munication methods. This library, called Ach, provides a message-bus or publish-subscribe communication

Digital Object Identifier 10.1109/MRA.2014.2356937
Date of publication: 15 January 2015

76 1070-9932/15©2015IEEE• IEEE ROBOTICS & AUTOMATION MAGAZINE • MARCH 2015

P
h

o
to

 b
y

 J
o

s
h

 M
e

is
t

e
r

, c
o

u
r

t
e

s
y

 o
f

 G
e

o
r

G
ia

 t
e

c
h

 c
o

ll
e

G
e

 o
f

 c
o

M
P

u
t

in
G

77March 2015 • IEEE rOBOTIcS & aUTOMaTION MaGaZINE •

semantics, similar to other real-time middleware and robotics
frameworks [13], [15], but with the distinguishing feature of
favoring newer data over old. Ach is formally verified and
efficient, and it always provides access to the most recent data
sample. To the best of our knowledge, these benefits are
unique among existing communications software.

Review of POSIX IPC
POSIX provides a rich variety of IPC that is well suited for
general-purpose information processing, but none are ideal
for real-time robot control. Typically, a physical process, such
as a robot, is viewed as a set of continuous, time-varying sig-
nals. To control this physical process with a digital computer,
one must sample the signal at discrete time intervals and per-
form control calculations using the sampled value. To
achieve high-performance control of a physical system, we
must process the latest sample with minimum latency. This
differs from the requirements of general computing systems
that focus on throughput over latency and favor prior data
over latter data. Thus, for robot control, it is better to favor
new data over old data whereas nearly all POSIX IPC favors
the old data. This problem is typically referred to as head-of-
line (HOL) blocking. The exception to this is POSIX shared
memory. However, the synchronization of shared memory is
a difficult programming problem, making the typical and
direct use of POSIX shared memory unfavorable for devel-
oping robust systems. Furthermore, some parts of the sys-
tem, such as logging, may need to access older samples; so
this also should be permitted at least on a best-effort basis.
Since no existing implementation satisfied our requirements
for low-latency exchange of most-recent samples, we have
developed a new open-source IPC library.

The three main types of POSIX IPC are streams, data-
grams, and shared memory. We review each of these types
and consider why these general-purpose IPC mechanisms are
not ideal for real-time robot control. Table 1 contrasts the
response of each method to a full buffer, and Table 2 summa-
rizes the pros and cons of each method. A thorough survey of
POSIX IPC is provided in [19].

Streams
Stream IPC includes pipes, firstIn, firstouts (FIFOs), local-
domain stream sockets, and transmission control protocol
(TCP) sockets. All of these IPC mechanisms expose the file
abstraction, a sequence of bytes accessed with read and
write. All stream-based IPC suffers from the HOL block-
ing problem; we must read all of the old bytes before we see
any new bytes. Furthermore, to prevent blocking of the
reading or writing process, we must resort to more compli-
cated nonblocking or asynchronous I/O.

Datagrams

Datagram Sockets
Datagram sockets perform better than streams in that they
are less likely to block the sender. In addition, some types of

datagram sockets can multicast packets, efficiently trans-
mitting them to multiple receivers. However, datagram
sockets give a variation on the HOL blocking problem
where newer messages are simply lost if a buffer fills up.
This is unacceptable since we require access to the most
recent data.

POSIX Message Queues
POSIX message queues are similar to datagram sockets and
also include the feature of message priorities. The downside is
that it is possible to block if the queue fills up. Consider a pro-
cess that gets stuck and stops processing its message queue.
When it starts again, the process must still read or flush old
messages before getting the most recent sample.

Table 1. Full buffer semantics.

Method Action on Full Buffer

Stream Block sender, or error

Datagram Drop newest message, or error

Message queue Block sender, or error

Ach Drop oldest message

Figure 1. Hubo, Golem Krang, and NAO are existing robotic systems
where Ach provides communications between the hardware drivers,
perception, planning, and control algorithms. (Photo courtesy of Josh
Meister and the Georgia Tech College of Computing.)

78 • IEEE ROBOTICS & AUTOMATION MAGAZINE • MARCh 2015

Shared Memory
POSIX shared memory is very fast, and one could always
have the latest data by simply overwriting a variable. However,
this provides no recourse for recovering older data that may
have been missed. In addition, shared memory presents syn-
chronization issues that are notoriously difficult to solve [10],
making the use of direct shared memory less suitable for
safety-critical real-time control.

The data structure that Ach most closely resembles is the
circular array. Circular arrays or ring buffers are common data
structures in device drivers and real-time programs, and the
implementation in Ach provides unique features to satisfy our
requirements for a multiprocess real-time system. Typical cir-
cular buffers allow only one producer and one consumer with
the view that the producer inserts data and the consumer
removes it. Our robots have multiple producers and multiple
consumers writing and reading a single sequence of messages.
A message reader cannot remove a message because some
other process may still need to read it. Because of this different
design requirement, Ach uses a different data structure and
algorithm to perform real-time IPC among multiple processes.

Further Considerations

Nonblocking and Asynchronous I/O Approaches
There are several approaches that allow a single process or
thread to perform I/O operations across several file descrip-
tions. Asynchronous I/O (AIO) may seem to be the most
appropriate for this application. However, the current imple-
mentation under Linux is not as mature as other IPC mecha-
nisms. Methods using select/poll/epoll/kqueue are widely
used for network servers. Yet, both AIO and select-based
methods mitigate the HOL problem, but do not eliminate it.
Specifically, the sender will not block, but the receiver must
read or flush the old data from the stream before it can see the
most recent sample.

Priorities
To the best of our knowledge, none of the stream or datagram
forms of IPC consider the issue of process priorities. Priorities
are critical for real-time systems. When there are two readers
that want the next sample, we want the real-time process,

such as a motor driver, to get the data and process it before a
nonreal-time process, such as a logger, does anything.

General Real-Time Robotics Middleware
In addition to the core POSIX IPC mechanisms, there are
many messaging middlewares and robot software architec-
tures. However, these are either not open source or not ideal
for our multiprocess real-time domain. Many of these
approaches build on an underlying POSIX IPC method,
inheriting that method’s strengths and weaknesses. Further-
more, our benchmark results for some of these methods (see
the “Benchmarks” section) show that they impose noticeable
overhead compared to the underlying kernel IPC.

Several frameworks and middleware focus on real-time
control or robotics. The Orocos real-time tool kit [3] and
NAOqi [1] are two architectures for robot control, but they
do not meet our requirements for flexible IPC. iRobot’s
Aware2.0 is not open source, and Microsoft Robotics Devel-
oper Studio is not open source and does not run on POSIX
systems. The robot operating system (ROS) [15] provides
open-source TCP and user datagram protocol (UDP) mes-
sage transports, which suffer from the aforementioned HOL
blocking problem. Common object request broker architec-
ture (CORBA) provides object-oriented remote procedure
calls, an event notification service, and underlies the
OpenRTM middleware. Our benchmark results (see the
“Benchmarks” section) show that TAO CORBA [17], a pop-
ular implementation, gives poor messaging performance
compared with the alternatives.

In contrast, the data distribution service (DDS) [13] and
lightweight communications and marshalling (LCM) [9] are
publish-subscribe network protocols. LCM is based on UDP
multicast, which efficiently uses network bandwidth to com-
municate with multiple subscribers. However, UDP does
drop newer packets when the receiving socket buffer is full.
These protocols may be complementary to the efficient and
formally verified IPC we present here.

In conclusion, none of these middlewares met our needs
for an open-source, lightweight, and non-HOL-blocking IPC.
However, the design of Ach facilitates integration with some
of these other frameworks (see the “Speed Regulation on
NAO” and “Reliable Software for the Hubo2+” sections).

Table 2. POSIX IPC summary, pros, and cons for real time.

Method Pro Con Examples

Streams Reliable, ordered HOL blocking Pipes, TCP, local socket

Datagrams Multicast, does not block sender Full buffer blocks or discards new data UDP, local socket

Message queues Can avoid blocking sender Full buffer blocks or discards new data POSIX message queues

Shared memory Fast Last only, synchronization issues POSIX shared memory, mmap

Asynchronous I/O No blocking Immature, favors old data POSIX asynchronous I/O

Nonblocking I/O No blocking Must retry, favors old data O_NONBLOCK

Multiplexed I/O Handles many connections Receiver must read/discard old data Select, poll, epoll, kqueue

79March 2015 • IEEE rOBOTIcS & aUTOMaTION MaGaZINE •

The Ach IPC Library
Ach provides a message bus or publish-subscribe style of
communication between multiple writers and multiple
readers. A real-time system has multiple Ach channels
across which individual data samples are published. Mes-
sages are sent as byte arrays, so arbitrary data may be trans-
mitted, such as floating point vectors, text, images, and
binary control messages. Each channel is implemented as
two circular buffers: 1) a data buffer with variable-sized
entries and 2) an index buffer with fixed-size elements indi-
cating the offsets into the data buffer. These two circular
buffers are written in a channel-specific POSIX shared
memory file. Using this formulation, we solve and formally
verify the synchronization problem exactly once and con-
tain it entirely within the Ach library.

The Ach interface consists of the following procedures.
 ● ach_create: Create the shared memory region and ini-

tialize its data structures.
 ● ach_open: Open the shared memory file and initialize

process local channel counters.
 ● ach_put: Insert a new message into the channel.
 ● ach_get: Receive a message from the channel.
 ● ach_close: Close the shared memory file.

Channels must be created before they can be opened. Creation
may be done directly by either the reading or writing process,
or it may be done via the shell command, ach mk channel_
name, before the reader or writer start. This is analogous to the
creation of FIFOs with either the mkfifo shell command or
C function. After the channel is created, each reader or writer
must open the channel before it can get or put messages.

Channel Data Structure
The core data structure of an Ach channel is a pair of circu-
lar arrays located in the POSIX shared memory file (Fig-
ure 2). It differs from typical circular buffers by permitting
multiple consumers to access the same message from the
channel. The data array contains variable-sized elements
that store the actual message frames sent through the Ach
channel. The index array contains fixed-size elements
where each element contains both an offset into the data
array and the length of that data element. A head offset into
each array indicates the place to insert the next data and the
location of the most recent message frame. Each reader
maintains its own offset into the index array, indicating the
last message seen by that reader. This pair of circular arrays
allows readers to find the variable-size message frames
based on the index array offset and the corresponding
entry in the data array.

Access to the channel is synchronized using a mutex and
condition variable. This allows readers to either periodically
poll the channel for new data or wait on the condition vari-
able until a writer has posted a new message. Using a read/
write lock instead would have allowed only polling. In addi-
tion, synchronization using a mutex prevents starvation and
enables proper priority inheritance between processes, which
is important to maintaining real-time performance.

Core Procedures
Two procedures compose the core of Ach: ach_put and
ach_get. Detailed pseudocode is provided in [6].

ach_put
The procedure ach_put inserts new messages into the
channel. It is analogous to write, sendmsg, and mq_send.
The procedure is given a pointer to the shared memory
region for the channel and a byte array containing the mes-
sage to post. There are four broad steps to the procedure.
1) Get an index entry. If there is at least one free index entry,

use it. Otherwise, clear the oldest index entry and its corre-
sponding message in the data array.

2) Make room in the data array. If there is enough room
already, continue. Otherwise, repeatedly free the oldest
message until there is enough room.

3) Copy the message into data array.
4) Update the offset and free counts in the channel structure.

ach_get
The procedure ach_get receives a message from the chan-
nel. It is analogous to read, recvmsg, and mq_receive.
The procedure takes a pointer to the shared memory region, a
storage buffer to copy the message to, the last message
sequence number received, the next index offset to check for
a message, and option flags indicating whether to block wait-
ing for a new message and whether to return the newest mes-
sage bypassing any older unseen messages. There are four
broad steps to the procedure.
1) If we are to wait for a new message and there is no new

message, then wait. Otherwise, if there are no new mes-
sages, return a status code indicating this fact.

2) Find the index entry to use. If we are to return the newest
message, use that entry. Otherwise, if the next entry we
expected to use contains the next sequence number we
expect to see, use that entry. Otherwise, use the oldest entry.

index_head index _free data_head data_free

2 3

4 1

I0

a1 a2 a3 b0

D0 D1 D2 D3 D4 D5 D6 D7

header

index_array

data_array

0

00 0

0

I1 I2 I3

a0

Figure 2. A logical memory structure for an Ach shared memory
file. In this example, I0 points to a 4-byte message starting at

,D1 and I1 points to a 1-byte message starting at .D5 The next
inserted message will use index cell I2 and start at .D6 There
are two free index cells and three free data bytes. Both arrays are
circular and wrap around when the end is reached.

80 • IEEE ROBOTICS & AUTOMATION MAGAZINE • MARCh 2015

3) According to the offset and size from the selected index
entry, copy the message from the data array into the pro-
vided storage buffer.

4) Update the sequence number count and next index entry
offset for this receiver.

Case Studies

Dynamic Balance on Golem Krang
Golem Krang (Figure 3) is a dynamically balancing, bimanual
mobile manipulator designed and built at the Georgia Tech
Humanoid Robotics Lab [20]. All of the real-time control for
Krang is implemented through the Ach IPC library. This

approach has improved software robustness and modularity,
minimizing system failures and allowing code reuse, both
within Krang and with other projects [7] sharing the same
hardware components. The software for Krang is imple-
mented as a collection of processes communicating over Ach
channels (Figure 4). In this design, providing a separate state
Ach channel for each hardware device ensures that the cur-
rent state of the robot can always be accessed through the
newest messages in each of these channels. In addition, split-
ting the control into separate balanced, for stable balancing,
and controlled, for arm control, processes promotes
robustness by isolating the highly critical balance control
from other faults. This collection of driver and controller dae-
mons communicating over Ach channels implements the
real-time, kilohertz control loop for Golem Krang.

This design provides several advantages for control on
Krang. The low overhead and suitable semantics of Ach
communication permits real-time control under Linux
using multiple processes. In several cases, Krang contains
multiple identical hardware devices. The message-passing,
multiprocess design aids code reuse by allowing access to
duplicated devices with multiple instances of the same dae-
mon binary—two instances of the ftd daemon for the F/T
sensors, two instances of the robotiqd daemon for the
grippers, and three instances of the pciod daemon for two
arms and torso.

The relative independence of each running process makes
this system robust to failures in noncritical components. For
example, an electrical failure in a waist motor may stall the
w_pciod process, but, without any additional code, the
balanced controller and amciod driver daemons con-
tinue running independently, ensuring that the robot does

IMU

BMS

E-STOP

Router

Key
Wi-Fi

Ethernet
CAN

RS232
RF

Left Arm Torso PRL Right Arm

Ctrl PC

Left Drive Right Drive

Gamepad

Console PC

E-Stop Button

Figure 3. A block diagram of the electronic components on Golem
Krang. The blocks inside the dashed line are onboard, and the blocks
outside are offboard. Control software runs on the Pentium-M control
PC under Ubuntu Linux, which communicates over eight CAN buses
to the embedded hardware. The arms are Schunk light weight arm,
3 (LWA3s) with ATI wrist force-torque sensors and Robotiq adaptive
grippers. The torso is actuated using three Schunk PRL motor
modules. The wheels are controlled using AMC servo drives. The
battery management system (BMS) monitors the lithium cells. (Photo
courtesy of Josh Meister and the Georgia Tech College of Computing.)

wheel_state

amciod

balanced

l_hand_state

w_pciodl_robotiqd

imud

waist_state

r_ftd

r_arm_inputwaist_inputr_hand_input

r_robotiqd

controlled

imu

l_arm_state

r ft

r_arm_state

l_ftd

cmd

nav

wheel_input

l_pciod

r_hand_state

r_pciod

l_arm_input

l_ft

l_hand_input

Figure 4. A block diagram of the primary software components on Golem Krang. The gray ovals are user-space driver processes,
the green ovals are controller processes, and the rectangles are Ach channels. Each hardware device, such as the IMU or LWA3, is
managed by a separate driver process. Each driver process sends state messages, such as positions or forces, over a separate state
channel. Devices that take input, such as the reference velocity, have a separate input channel.

81March 2015 • IEEE rOBOTIcS & aUTOMaTION MaGaZINE •

not fall. Thus, Ach helps enhance the safety of this potentially
dangerous robot.

Speed Regulation on NAO
The Aldebaran NAO is a 0.5-m, 5-kg bipedal robot with 25
degrees of freedom (DOF). It contains an onboard Intel Atom
PC running a GNU/Linux distribution with the NAOqi
framework to control the robot. The user code is loaded into
the NAOqi process as dynamic library modules. We used Ach
to implement human-inspired control [14] on the NAO [5].
The human-inspired control approach achieves provably sta-
ble, human-like walking on robots by identifying key parame-
ters in human gaits and transferring these to the robot
through an optimization process. To implement this
approach, real-time control software to produce the desired
joint angles must run on the NAO’s internal computer.

The NAOqi framework provides an interface to the
robot’s hardware; however, it presents some specific chal-
lenges for application development and for the implementa-
tion of human-inspired control in particular. NAOqi is slow
and memory-intensive, consuming at idle 15% of the avail-
able CPU time and 20% of the available memory. In addi-
tion, real-time user code must run as a callback function,
which is awkward for the desired controller implementation.
Using Ach to move the controller to a separate process
improves the implementation.

A multiprocess software design (Figure 5) addresses these
challenges with NAOqi and enhances the robustness and
efficiency of human-inspired control on the NAO. Each pro-
cess runs independently; so an error in a noncritical process,
such as logger/debugger, cannot affect other processes,
eliminating a potential failure. The user processes can be
stopped and started within only a few seconds. In contrast,
NAOqi takes about 15 s to start. The independence of pro-
cesses means that NAOqi need not be restarted so long as
libamber is unchanged. Since libamber is a minimal
module, only interfacing with the Ach channels and access-
ing the NAO’s hardware, it can be reused unmodified for dif-
ferent applications on the NAO. Different projects can run
different controller processes, using Ach and libamber to
access the NAO’s hardware, all without restarting the NAOqi
process. In addition, using standard debugging tools, such as
GNU debugger (GDB), is much easier since the user code

can be executed within the debugger independently of the
NAOqi framework. Thus, converting the NAO’s control soft-
ware to a multiprocess design simplified development and
improved reliability.

Reliable Software for the Hubo2+
The Hubo2+ is a 1.3-m-tall, 42-kg full-size humanoid robot,
produced by the Korean Advanced Institute of Science and
Technology (KAIST) and spinoff company Rainbow Inc.
[4]. It has 38 DOF: six per arm and leg, five per hand, three
in the neck, and one in the waist. The sensors include three-
axis force-torque sensors in the wrists and ankles, acceler-
ometers in the feet, and an inertial measurement unit
(IMU). The sensors and embedded motor controllers are
connected via a controller area network to a pair of Intel
Atom PC104+ computers.

Hubo-Ach (available under permissive license, http://
github.com/hubo/hubo-ach) is an Ach-based interface to
Hubo’s sensors and motor controllers [12]. This provides a
conventional GNU/Linux programming environment, with
the variety of tools available therein, for developing applica-
tions on the Hubo. It also links the embedded electronics and
real-time control to popular frameworks for robotics soft-
ware: ROS [15], OpenRAVE, and MATLAB.

Reliability is a critical issue for software on the Hubo. As a
bipedal robot, Hubo must constantly maintain a dynamic bal-
ance; if the software fails, it will fall and break. A multiprocess
software design improves Hubo’s reliability by isolating the
critical balance code from other noncritical functions, such as
control of the neck or arms. For the high-speed, low-latency
communications and priority access to latest sensor feedback,
Ach provides the underlying IPC.

Hubo-Ach handles controller area network (CAN) bus
communication between the PC and embedded electronics.
Because the motor controllers synchronize to the control
period in a phase lock loop, the single hubo-daemon pro-
cess runs at a fixed control rate. The embedded controllers
lock to this rate and linearly interpolate between the com-
manded positions, providing smoother trajectories in the face
of limited communication bandwidth. This communication
process also avoids bus saturation; with a CAN bandwidth of
1 Mbit/s and a 200-Hz control rate, hubo-daemon utilizes
78% of the bus. Hubo-daemon receives position targets

Libamber

DCM

logger/
debugger

trajectorGenerator

motionParser

Supervisor
Generator

NAOqimotionControl

chan_ctrl

chan_feedchan_vel

chan_super

Figure 5. A block diagram of the primary software components on NAO. The solid-lined blocks are real-time processes, and the
dashed-lined blocks are nonreal-time processes. NAOqi loads the libamber module to communicate over Ach channels. The
motionControl process performs feedback control, while the logger/debugger process records data from the Ach channels. The
supervisor generator process performs high-level policy generation for speed control. (Photo courtesy of Josh Meister and the
Georgia Tech College of Computing.)

82 • IEEE ROBOTICS & AUTOMATION MAGAZINE • MARCh 2015

from a feedforward channel and publishes sensor data to
the feedback channel, providing the direct software inter-
face to the embedded electronics. Figure 6 shows an example
control loop integrating Hubo-Ach and ROS.

Hubo-Ach is being used for numerous projects at sev-
eral research labs. Users include groups at the Massachu-
setts Institute of Technology, Worcester Polytechnic Insti-
tute (WPI), The Ohio State University, Purdue, Swarthmore
College, Georgia Tech, and Drexel University. These proj-
ects primarily revolve around the Defense Advanced
Research Projects Agency (DARPA) robotics challenge
(DRC) (http://www.theroboticschallenge.org/) team
DRC-Hubo (http://drc-hubo.com/). The DRC includes
rough terrain walking, ladder climbing, valve turning, vehi-
cle ingress/egress, and more. Figure 7 shows the Hubo
using the Hubo-Ach system to turn a valve.

Hubo-Ach helps the development of reliable, real-time
applications on the Hubo. Separating software modules into
different processes increases system reliability. A failed pro-
cess can be independently restarted, minimizing the chance
of damage to the robot. In addition, the controllers can run at
fast rates because Ach provides high-speed, low-latency com-
munication with hubo-daemon. Hubo-Ach provides a C
API callable from high-level programming languages, and it
integrates with popular platforms for robot software, such as
ROS and MATLAB, providing additional development flexi-
bility. Hubo-Ach is a validated and effective interface between

the mechatronics and the software control algorithms of the
Hubo full-size humanoid robot.

Performance and Discussion

Formal Verification
We used the SPIN model checker [8] to formally verify Ach.
Formal verification is a method to enhance the reliability of
software by first modeling the operation of that software and
then checking that the model adheres to a specification for
performance. SPIN models concurrent programs using the
Promela language. Then, it enumerates all possible world
states of that model and ensures that each state satisfies the
given specification. This can detect errors that are difficult to
find in testing. Because process scheduling is nondeterminis-
tic, testing may not reveal errors due to concurrent access,
which could later manifest in the field. However, because
model checking enumerates all possible process interleavings,
it is guaranteed to detect concurrency errors in the model.

We verified the ach_put and ach_get procedures
using SPIN. Our model for Ach checks the consistency of
channel data structures, ensures proper transmission of mes-
sage data, and verifies freedom from deadlock. Model check-
ing verifies these properties for all possible interleavings of
ach_put and ach_get, which would be practically impos-
sible to achieve through testing alone. By modeling the
behavior of Ach in Promela and verifying its performance
with SPIN, we eliminated errors in the returned status codes
and simplified our implementation, improving the robust-
ness and simplicity of Ach.

Benchmarks
We provide benchmark results of message latency for Ach
and a variety of other kernel IPC methods as well as the LCM,
ROS, and TAO CORBA middleware (benchmark code avail-
able at http://github.com/ndantam/ipcbench). Latency is
often more critical than bandwidth for real-time control as
the amount of data per sample is generally small, e.g., state
and reference values for several joint axes. Consequently, the
actual time to copy the data is negligible compared with other
sources of overhead such as process scheduling. The bench-
mark application performs the following steps.
1) Initialize communication structures.
2) Fork sending and receiving processes.

Figure 7. Hubo (left) turning a valve via Hubo-Ach alongside
Daniel M. Lofaro (right). Valve turning was developed in
conjunction with Dmitry Berenson at WPI for the DRC. (Photo
courtesy of Daniel M. Lofaro and Kenneth Chaney.)

hubo-ach-ros filter hubo-daemon
CAN

feedforwardref

feedback

planner

rviz
rFeedback

rFeedforward Key

CAN

Ach

ROS

Figure 6. A block diagram of the feedback loop integrating Hubo-Ach and ROS. The planner process computes trajectories, and the
rviz process displays a three-dimensional model of Hubo’s current state. The Hubo-ach-ros process bridges the Ach channels
with ROS topics. The filter process smooths trajectories to reduce jerk. Hubo-daemon communicates with the embedded motor
controllers. (Photo courtesy of Josh Meister and the Georgia Tech College of Computing.)

83March 2015 • IEEE rOBOTIcS & aUTOMaTION MaGaZINE •

3) Sender: Post time-stamped messages at the desired
frequency.

4) Receivers: Receive messages and record latency of each
messaged based on the time stamp.
We ran the benchmarks under two kernels: Linux

PREEMPT_RT and Xenomai. PREEMPT_RT is a patch to
the Linux kernel that reduces latency by making the ker-
nel fully preemptible. Any Linux application can request
real-time priority. Xenomai runs the real-time Adeos
hypervisor alongside a standard Linux kernel. Real-time
applications communicate through Adeos via an API skin,
such as RTDM, µITRON, or POSIX; these applications are
not binary compatible with Linux applications, although
the POSIX skin is largely source compatible.

Figure 8 shows the results of the benchmarks run on an
Intel Xeon 1270v2 under both Linux PREEMPT_RT and
Xenomai’s POSIX skin. We used Linux 3.4.18 PREEMPT_
RT, Xenomai 2.6.2.1/RTnet 0.9.13/Linux 3.2.21 Ach 1.2.0,

LCM 1.0.0, ROSCPP 1.9.50, and TAO 2.2.1 with ACE 6.2.1.
(While we were able to test RTnet’s loopback performance,
the RTnet driver for our Ethernet card caused a kernel
panic. Similar stability issues with Xenomai were noted in
[2].) We benchmarked one and two receivers, correspond-
ing to the communication cases in the “Case Studies” sec-
tion. Each test lasted for 600 s, giving approximately 6 # 105
data points per receiver. These results show that for the use
cases in the “Case Studies” section, where communication is
between a small number of processes, Ach offers a good bal-
ance of performance in addition to its unique latest-mes-
sage-favored semantics.

As an approximate measure of programmer effort
required for each of these methods, Figure 9 summarizes the
source lines of code (measured using http://www.dwheeler.
com/sloccount/) for the method-specific code in the bench-
mark program. The counts include message and interface
declarations and exclude generated code. To give a more fair

One Receiver—PREEMPT_RT

Two Receivers—PREEMPT_RT

One Receiver—Xenomai

Two Receivers—Xenomai

0 5 10 15 20 25 30 35 40 45 50
TAO Procedure

LCM
Localhost TCP
Localhost UDP

Local Datagram Socket
Local Stream Socket

Pipe
Message Queue

Ach

Mean 99% Max

0 100 200 300 400 500 600 700
TAO Event
ROS TCP
ROS UDP

0 5 10 15 20 25 30 35 40 45 50
LCM

UDP Multicast
Ach

0 100 200 300 400 500 600 700

TAO Event
ROS TCP
ROS UDP

0 5 10 15 20

Localhost UDP
Message Queue

Ach

0 5 10 15 20
Ach

Time (ns)

(a) (c)

(b)

100

100

100

101100

101

102

102

10-1

10-1

10-1

10-2

10-2

10-3

Control Cycle Frequency (kHz)

M
es

sa
ge

 L
at

en
cy

/C
yc

le
 P

er
io

d
Mean 99% Max

Hops

M
es

sa
ge

 L
at

en
cy

/C
yc

le
 P

er
io

d

Mean 99% Max

Ach Message Latency for 0.1–100-kHz Cycles

Ach Message Latency for 1–512 Hops at 1 kHz

Figure 8. The message latency for Ach, POSIX IPC, and common middleware. “Mean” is the average over all messages, “99%” is the
latency that 99% of the messages beat, and “Max” is the maximum recorded latency. (b) and (c) show the limits of Ach performance
on Linux PREEMPT RT, with a 100 = 1 latency ratio indicating latency of an entire cycle. (b) shows the latency ratio for various control
cycle frequencies. The discontinuity above 50 kHz occurs due to transmission time exceeding the cycle period and consequent missed
messages. (c) shows the latency ratio resulting from passing the message through multiple intermediate processes.

84 • IEEE ROBOTICS & AUTOMATION MAGAZINE • MARCh 2015

comparison, we attempted to consistently check errors across
all methods. Most methods have similar line counts, with
sockets usually requiring a small amount of extra code to set
up the connection. The pipe code is especially short because
the file descriptors are passed through fork; this would not
work for unrelated processes. The networked methods in the
test do not consider security, which would necessarily
increase the complexity of networked real-world applications,
while Ach, message queues, and local domain sockets implic-
itly control local data access based on user IDs. TAO CORBA
stands out with several times more code than the other meth-
ods. It is also notable that the higher-level frameworks in this
test did not result in significantly shorter communication
code than direct use of kernel IPC.

Discussion
The performance limits illustrated in Figure 8 indicate the
potential applicability of Ach. The latency ratio compared with
the hop count is particularly important because it bounds the
minimum granularity at which the control system can be
divided between processes. On our test platform, significant
overhead, i.e., exceeding 25% of the 1-kHz control cycle, is
incurred when information must flow serially through
approximately 32 processes. This cost is important to consider
when dividing computation among different processes. For
higher control rates, our test platform reaches 25% messaging
overhead at approximately 10 kHz. For the robots in the “Case
Studies” section, the embedded components, particularly the
CAN buses, effectively limit the control rates to 1 kHz or
lower; Ach is not the bottleneck for these systems. However,
implementing systems that do require 10 kHz or greater con-
trol rates would be difficult with Ach on Linux PREEMPT_RT.
These performance considerations show the range of systems
for which this software design approach is suitable.

In addition to performance considerations, it is also criti-
cal to note the semantic differences between communica-
tion methods. The primary unique feature of Ach is that
newer messages always supersede older messages. The other
message-passing methods give priority to older data, and
will block or drop newer messages when buffers are full.
CORBA also differs from the other methods by exposing a
remote procedure call rather than a message-passing inter-

face; however, the CORBA event service layers message
passing on top of the remote procedure call. Selecting the
appropriate communication semantics for an application
simplifies implementation.

Some of the benchmarked methods also operate trans-
parently across networks. This can simplify distributing an
application across multiple machines, though this process is
not seamless due to differences between local and network
communication [16]. Processes on a single host can access a
unified physical memory that provides high bandwidth and
assumed perfect reliability; still, care must be taken to
ensure memory consistency between asynchronously exe-
cuting processes. In contrast, real-time communication
across a network need not worry about memory consis-
tency, but must address issues such as limited bandwidth,
packet loss, collisions, clock skew, and security. With Ach,
we have focused on efficient, latest-message-favored com-
munication between a few processes on a single host. We
intend the Ach double-circular-buffer implementation to be
complementary to, and its message-passing interface com-
patible with, networked communication. This meets the
communication requirements for systems such as those in
the “Case Studies” section.

An important consideration in the design of Ach is the idea
of mechanism, not policy [18]. Ach provides a mechanism to
move bytes between processes and to notify callers of errors. It
does not specify a policy for serializing-arbitrary data structures
or handling all types of errors. Such policies are application
dependent and, even within our own research groups, have
changed across different applications and over time. This sepa-
ration of policy from mechanism is important for flexibility.

This flexibility is helpful when integrating with other com-
munication methods or frameworks. To integrate with ROS on
Hubo (see the “Reliable Software for the Hubo2+” section), we
created a separate process to translate between real-time Ach
messages and nonreal-time ROS messages. This approach is
straightforward since both Ach and ROS expose a publish/sub-
scribe message passing interface. On the other hand, NAOqi
exposes a callback interface. Still, we can integrate with this (see
the “Speed Regulation on NAO” section) by relaying Ach mes-
sages within the NAOqi callback. In general, integrating Ach
with other frameworks requires serializing framework data
structures to send over an Ach channel. However, since Ach
works with raw byte arrays, it is possible to directly use existing
serialization methods such as XDR, Boost.Serialization, ROS
Genmsg, Google Protocol Buffers, or contiguous C structures.

Achieving real-time bounds on general-purpose computing
systems presents an overall challenge. The Linux PREEMPT_
RT patch seamlessly runs Linux applications with significantly
reduced latency compared with vanilla Linux, and work is on-
going to integrate it into the mainline kernel. However, it is far
from providing formally guaranteed bounds on latency. Xeno-
mai typically offers better latency than PREEMPT_RT [2], but
it is less polished and its dual kernel approach complicates de-
velopment. There are many other OSs with a dedicated focus
on real time, e.g., VxWorks, QNX, and TRON. In addition to

50 100 150 200 250
TAO Event

TAO Procedure
Local Stream Socket

TCP
ROS

UDP Multicast
LCM

Local Datagram Socket
UDP
Ach

Message Queue
Pipe

Source Lines of Code

Figure 9. Source lines of code for each benchmarked method.

85March 2015 • IEEE rOBOTIcS & aUTOMaTION MaGaZINE •

OS selection, the underlying hardware can present challenges.
CPU frequency scaling, which reduces power usage, can signif-
icantly increase latency. On x86/AMD64 processors, system
management interrupts (SMI) (http://www.intel.com/design/
processor/manuals/253669.pdf) preempt all software, includ-
ing the OS, potentially leading to latencies of hundreds of mi-
croseconds. A fundamental challenge is that general-purpose
computation considers time, not in terms of correctness, but
only as a quality metric—faster is better—whereas real-time
computation depends on timing for correctness [11]. These is-
sues are important in the overall real-time system design.

Conclusions
Ach is a new IPC method for real-time communication, dem-
onstrated on multiple robotic systems. Compared with stan-
dard POSIX IPC and the communication mechanisms
employed by popular robotics middleware [1], [15], [19],
Ach’s unique message-passing semantics always allow the lat-
est data sample to be read. It provides good performance for
typical communication needs on humanoid robots. The algo-
rithms and data structures are formally verified. Ach has been
validated in the core of a variety of robot control applications
and has aided the development of efficient and reliable con-
trol software for our robots, Golem Krang, Hubo, and NAO.

The Ach library and sample code can be downloaded at
http://www.golems.org/projects/ach.html. By providing this
open-source IPC library to the robotics community, we hope
that it will be a useful tool to expedite the development of new
robust systems.

Acknowledgments
This work is dedicated to the memory of M. Stilman, whose
perpetual enthusiasm will always inspire us. We would like to
thank M. Grey and M. Zucker for their major development of
Hubo-Ach.

References
[1] C. E. Agüero, J. M. Cañas, F. Martín, and E. Perdices, “Behavior-based itera-
tive component architecture for soccer applications with the Nao humanoid,” in
Proc. 5th Workshop Humanoids Soccer Robots, Nashville, TN, 2010, pp. 29–34.
[2] J. H. Brown and B. Martin. (2010). How fast is fast enough? Choosing
between Xenomai and Linux for real-time applications. Invariant Systems
Inc., Cambridge, MA. Tech. Rep. [Online]. Available: https://www.osadl.org/
fileadmin/dam/rtlws/12/Brown.pdf
[3] H. Bruyninckx, P. Soetens, and B. Koninckx, “The real-time motion con-
trol core of the Orocos project,” in Proc. IEEE Int. Conf. Robotics Automation,
2003, vol. 2, pp. 2766–2771.
[4] B.-K. Cho, S.-S. Park, and J.-H. Oh, “Controllers for running in the human-
oid robot,” in Proc. 9th IEEE-RAS Int. Conf. Humanoid Robots, Paris, France,
2009, pp. 385–390.
[5] N. Dantam, A. Hereid, A. Ames, and M. Stilman, “Correct software syn-
thesis for stable speed-controlled robotic walking,” in Proc. Robotics: Science
Systems, June 2013.
[6] N. Dantam and M. Stilman, “Robust and efficient communication for real-
time multi-process robot software,” in Proc. 12th IEEE-RAS Int. Conf. Human-
oid Robots, Osaka, Japan, 2012, pp. 316–322.

[7] N. Dantam and M. Stilman, “The motion grammar: Analysis of a linguistic
method for robot control,” IEEE/RAS Trans. Robot., vol. 29, no. 3, pp. 704–718, 2013.
[8] G. Holtzman, The spin model checker. Reading, MA: Addison-Wesley, 2004.
[9] A. S. Huang, E. Olson, and D. C. Moore, “LCM: Lightweight communica-
tions and marshalling,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots Systems,
Taipei, Taiwan, 2010, pp. 4057–4062.
[10] T. Kelly, Y. Wang, S. Lafortune, and S. Mahlke, “Eliminating concurrency
bugs with control engineering,” Computer, vol. 42, no. 12, pp. 52–60, 2009.
[11] E. A. Lee, “Computing needs time,” Commun. ACM, vol. 52, no. 5, pp.
70–79, May 2009.
[12] D. Lofaro, “Unified algorithmic framework for high degree of freedom
complex systems and humanoid robots,” Ph.D. dissertation, Dept. Elect. Eng.,
Drexel Univ., Philadelphia, PA, May 2013.
[13] (2007, Jan.). Data Distribution Service for Real-time Systems. Object Management
Group Inc., Needham, MA. [Online]. Available: http://www.omg.org/spec/DDS/1.2/
[14] M. J. Powell, A. Hereid, and A. D. Ames, “Speed regulation in 3D robotic
walking through motion transitions between human-inspired partial hybrid
zero dynamics,” in Proc. IEEE Int. Conf. Robotics Automation, Karlsruhe,
Baden-Württemberg, 2013, pp. 4803–4810.
[15] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “ROS: An open-source robot operating system,” in Proc.
IEEE Int. Conf. Robotics Automation, Workshop Open Source Robotics, 2009.
[16] A. Rotem-Gal-Oz. (2006). Fallacies of distributed computing explained. Sun
Microsystems Inc., Santa Clara, CA. Tech. Rep. [Online]. Available: http://www.
rgoarchitects.com/Files/fallacies.pdf
[17] D. C. Schmidt, D. L. Levine, and S. Mungee, “The design of the TAO real-
time object request broker,” Comput. Commun., vol. 21, no. 4, pp. 294–324, 1998.
[18] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts.
Hoboken, NJ: Wiley, 2009.
[19] W. R. Stevens and S. A. Rago, Advanced Programming in the UNIX Envi-
ronment, 2nd ed. Reading, MA: Addison-Wesley, 2005.
[20] M. Stilman, J. Olson, and W. Gloss, “Golem Krang: Dynamically stable
humanoid robot for mobile manipulation,” in Proc. IEEE Int. Conf. Robotics
Automation, Anchorage, AK, 2010, pp. 3304–3309.

Neil T. Dantam, Department of Computer Science, Rice Uni-
versity, Houston, Texas, United States. E-mail: ntd@rice.edu.

Daniel M. Lofaro, Electrical and Computer Engineering,
George Mason University, Fairfax, Virginia, United States.
E-mail: dlofaro@gmu.edu.

Ayonga Hereid, Mechanical Engineering, Texas A&M Uni-
versity, College Station, United States. E-mail: ayonga@
tamu.edu.

Paul Y. Oh, Department of Mechanical Engineering, Univer-
sity of Nevada, Las Vegas, United States. E-mail: paul.oh@
unlv.edu.

Aaron D. Ames, Mechanical Engineering, Texas A&M Uni-
versity, College Station, United States. E-mail: aames@
tamu.edu.

Mike Stilman, Institute for Robotics and Intelligent
Machines, Georgia Institute of Technology, Atlanta,
United States.

