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Time-Varying Foot-Placement Control for
Underactuated Humanoid Walking on Swaying

Rigid Surfaces
Yuan Gao∗,1, Victor Paredes∗,2, Yukai Gong3, Zijian He4, Ayonga Hereid2, Yan Gu4

Abstract—Locomotion on dynamic rigid surface (i.e., rigid
surface accelerating in an inertial frame) presents complex
challenges for controller design, which are essential for deploy-
ing humanoid robots in dynamic real-world environments such
as moving trains, ships, and airplanes. This paper introduces a
real-time, provably stabilizing control approach for underactu-
ated humanoid walking on periodically swaying rigid surface.
The first key contribution is the analytical extension of the
classical angular momentum-based linear inverted pendulum
model from static to swaying grounds. This extension results
in a time-varying, nonhomogeneous robot model, which is
fundamentally different from the existing pendulum models.
We synthesize a discrete footstep control law for the model and
derive a new set of sufficient stability conditions that verify
the controller’s stabilizing effect. Another key contribution
is the development of a hierarchical control framework that
incorporates the proposed footstep control law as its higher-
layer planner to ensure the stability of underactuated walking.
The closed-loop stability of the complete hybrid, full-order
robot dynamics under this control framework is provably an-
alyzed based on nonlinear control theory. Finally, experiments
conducted on a Digit humanoid robot, both in simulations
and with hardware, demonstrate the framework’s effectiveness
in addressing underactuated bipedal locomotion on swaying
ground, even in the presence of uncertain surface motions and
unknown external pushes.

Index Terms—Legged robot control, locomotion stability,
reduced-order modeling, underctuation, dynamic ground.

I. INTRODUCTION

Locomotion is a fundamental capability of legged robots,
enabling them to navigate diverse environments to perform a
variety of real-world tasks, such as warehouse automation,
home assistance, package delivery, and search and rescue.
Although robust walking on complex yet static terrains such
as slopes [1], stairs [2], and gravel [3] has been extensively
studied, the focus has primarily been on overcoming sig-
nificant challenges in controller design due to the inherently
unstable, hybrid, nonlinear dynamics of robots, compounded
by uncertainties such as terrain variations [4].
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Fig. 1. Top: The proprietary stepping-in-place controller of the humanoid
robot Digit fails to maintain stability during DRS sway at a frequency of
0.25 Hz and amplitude of 5 cm. Bottom: Our proposed framework reliably
achieves stable walking under identical conditions.

Conversely, bipedal locomotion on dynamic rigid surface
(DRS)—rigid surface that move within an inertial frame,
such as those on buses, vessels, and airplanes—remains rel-
atively underexplored. This is despite the critical importance
of such capabilities in scenarios involving inspection, main-
tenance, and emergency response on moving transportation
vehicles and oil platforms.

Current robust controllers designed for static terrains may
only handle mild DRS motions and are prone to failure under
more intense or prolonged DRS movements. For instance,
as depicted in Fig. 1, the proprietary controller of the Digit
humanoid robot fails to maintain stable locomotion under
moderate DRS sway. The primary issue is that omitting
explicit consideration of surface motion results in it acting
as a temporally persistent disturbance, giving the robot
insufficient recovery time. This may induce excessive control
actions that exceed the robot’s actuator capabilities, leading
to potential instability and safety risks.

Thus, this paper introduces a control framework that ex-
plicitly incorporates DRS motion into the dynamic modeling
and controller design of the robot. Our approach not only
aims to enable stable locomotion on DRS for underactuated
legged robots but also seeks to offer performance guaran-
tees through provable stabilization of the walking dynamics
associated with DRS locomotion.

A. Related work

1) Stability criteria and control for fully actuated walk-
ing: Fully actuated walking has been long studied and can
be used to facilitate complex tasks beyond walking, such as

ar
X

iv
:2

40
9.

08
37

1v
1 

 [
cs

.R
O

] 
 1

2 
Se

p 
20

24



simultaneous execution of locomotion and manipulation [5].
For fully actuated walking where a robot’s number of de-
grees of freedom (DoFs) equals the number of actuators, an
extensively studied walking control paradigm is based on the
zero moment point (ZMP) condition [6], [7]. This condition
constrains the robot’s center of pressure to be strictly within
the support polygon, thus restricting a support foot from
rolling about its edge. By enforcing the ZMP condition and
the other ground-contact constraints (e.g., friction cone and
unilateral constraints) on the full-order robot model (i.e., a
model describing the robot dynamics associated with all
DoFs), existing motion generation strategies can produce
reference motions that correspond to balanced walking.
Despite the effectiveness of these methods for static terrain,
their computational complexity often precludes real-time
application due to the high dimensionality and nonlinear
nature of legged robot dynamics.

To address this, reduced-order models such as the linear
inverted pendulum (LIP) have been developed, simplifying
the center of mass (CoM) dynamics to enable feasible
motion planning under the ZMP constraints [8]–[10]. Meth-
ods including the capture point [11]–[14] and divergent
component of motion (DCM) [15]–[17] also employ the LIP
to enable computationally efficient gait generation.

Still, existing gait generation methods based on the ZMP,
Capture Point, and DCM primarily focus on fully actuated
robots, rather than underactuated walking where the number
of DoFs is greater than the number of actuators. Further,
as these approaches use robot models (e.g., the classical
LIP model) that assume the ground is static, they may not
satisfactorily ensure stability or robustness of walking when
the ground accelerates in an inertial frame.

2) Stability criteria and control for underactuated walk-
ing: Underactuation in walking robots can be induced by a
passive support foot (e.g., point foot). With deactivated foot
joints, a robot with finite-size feet effectively become a robot
with point feet, which simplifies the analysis of foot-ground
contact [18]. Also, exploiting underactuation can facilitate
dynamic, agile, and energy-efficient gait [19], [20]. Yet,
underactuation poses additional challenges as unactuated
dynamics cannot be directly altered by joint torques [21].

The hybrid zero dynamics (HZD) framework [21]–[24] is
an extensively studied control approach for underactuated
bipedal walking. This approach treats the legged robot’s
hybrid dynamics model, which describes both the continuous
motion (e.g., foot swinging) and discrete events (e.g., foot
landings), to ensure the provable stability of periodic orbits
within the robot’s state space. While effective for both fully
actuated and underactuated robots, the complexity and com-
putational demands of HZD can limit its application to pre-
calculated gaits [25]–[30], which may be restrictive for real-
world scenarios. Recent studies have attempted to mitigate
these issues via offline generation of a family of different
gaits [31], improving the robustness under disturbances [32]
and enabling walking over discrete terrain [33].

To enable flexible and efficient real-time adjustment of
gait characteristics such as step lengths, which are critical

for guaranteeing walking stability and enhancing robustness,
Xiong et al. [34], [35] analytically extended the classical
continuous-time LIP model with a discrete model of foot
landings, creating a hybrid LIP (H-LIP) model. This de-
velopment led to the establishment of provable stability
conditions that guide the planning of stabilizing foot-landing
positions. Similarly, Gong et al. [18] introduced a hybrid
version of the angular-momentum-based LIP (ALIP) model,
explicitly incorporating a robot’s contact angular momentum
as a state variable to improve robustness against motor
torques and ensure the invariance of the contact angular
momentum at foot-touchdown impacts. These reduced-order
models have recently been extended to accommodate vertical
CoM movements, facilitating navigation over rough terrain
and stairs [36], [37], and have been integrated with adaptive
regulators to enhance the robustness of locomotion [28].

While these approaches have achieved remarkable perfor-
mance on physical robots traversing various complex real-
world environments, they generally assume that the ground
is stationary. Thus, significant ground motion introduces
unmodeled uncertainties that can lead to walking instability
under these previous control frameworks.

3) Robust walking control for static terrain: Beyond the
existing work reviewed earlier, model predictive control
schemes are well-suited for addressing perturbations such
as uncertain rough terrain since they explicitly enforce the
physical limits and constraints [38]–[41]. In addition to
model-based approaches, reinforcement learning based con-
trol has realized highly robust and agile walking in a wide
variety of complex real-world terrains [42]–[47]. However,
these methods often assume static ground conditions and
does not explicitly account for ground motion, which may
not ensure locomotion stability on accelerating ground.

4) Stability conditions and control for accelerating
ground: Producing stable gait on DRS presents a complex
control challenge due to the inherently time-varying robot
dynamics emerging from robot-DRS interactions (Fig. 1).
Recently, there has been an increasing interest in study-
ing the modeling, control design, and stability analysis of
quadrupedal walking on vertically moving DRS. Iqbal et
al. [48] introduced a provably stabilizing nonlinear control
approach that explicitly deals with the hybrid, nonlinear,
and time-varying, full-order robot dynamics associated with
quadrupedal walking on DRS. This approach, however,
relies heavily on offline motion generation to meet real-time
implementation needs, limiting its practical application.

Furthermore, the classical LIP model has been modi-
fied to overcome its static terrain assumption by explicitly
considering the vertical movement of DRS, allowing for
real-time motion generation and control for quadrupedal
walking [49]–[51]. Although these modifications provide
stability conditions for the extended LIP models during
vertical DRS movements, they cannot be directly applied
to address horizontally swaying surfaces. This is because
the robot dynamics differ fundamentally during horizontal
versus vertical motions. This research aims to fill this gap
by creating a new dynamics model and control framework
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for locomotion on swaying DRS.

B. Contribution

This study aims to create a real-time, provably stabilizing
control approach for underactuated humanoid walking dur-
ing periodic and horizontal DRS motions, even in the pres-
ence of uncertainties such as sudden pushes and uncertain
ground movements. To the best of our knowledge, this study
represents one of the earliest efforts to explicitly address
temporally persistently swaying ground and enable reliable
underactuated bipedal locomotion on accelerating ground.

Our preliminary work [52] analytically extended the ALIP
model [18] from static to swaying DRS, producing a new
reduced-order model referred to as ALIP-DRS. This ini-
tial study also provably analyzed the model’s stability and
synthesized a hierarchical control framework based on the
resulting stability condition. Yet, the condition assumed that
the robot’s gait period matched the DRS motion period
exactly, which can be restrictive for practical applications.
Moreover, the stability of the complete full-order closed-loop
system under the proposed framework was not analyzed, and
experimental validation on hardware was absent.

Building upon our preliminary work [52], the substantial,
new contributions of this study are:
(a) Theoretical generalization of the stability condition

for the ALIP-DRS model by allowing the ratio be-
tween the gait and the DRS motion periods to be any
positive rational number. Previously, the preliminary
condition [52] assumed a unity ratio. Also, supporting
propositions of the main stability theorem are provided,
whereas previously only the theorem was presented.

(b) Development of a three-layer control framework that
achieves stable underactuated bipedal walking during
DRS sway. The framework extends beyond the prelim-
inary control framework in [52], which was limited to
the special stability condition for the ALIP-DRS.

(c) Overall Lyapunov-based stability analysis for the com-
plete closed-loop full-order system under the proposed
control framework, which verifies the provable stability
of the system and was not given in [52].

(d) Experimental validation assessing the effectiveness of
the proposed control approach in ensuring walking sta-
bility and robustness under various DRS sway motions
and uncertainties such as uncertain DRS motions in
multiple directions and unknown sudden pushes.

This paper is structured as follows. Section II introduces
the proposed ALIP-DRS model for locomotion during DRS
sway. Section III presents the proposed discrete footstep
control and stability analysis for the ALIP-DRS. Section IV
describes a hierarchical control framework that utilizes the
ALIP-DRS footstep controller to indirectly stabilize the un-
actuated dynamics of a full-dimensional underactuated robot.
Section V provides the stability analysis of the complete full-
order system under the proposed framework. Sections VI
and VII report the simulation and hardware experiment
results. Section VIII discusses the capabilities and limitations
of this work. Section IX gives the concluding remarks.

Fig. 2. Illustration of the proposed hybrid ALIP-DRS model, showing both
continuous and discrete components in the sagittal and frontal planes.

II. ALIP-DRS MODEL

This section introduces the derivation of the proposed
ALIP-DRS model for bipedal walking on swaying DRS.

The key to the derivation is the analytical extension of the
classical ALIP model [18] from static to dynamic terrain,
achieved by explicitly incorporating the DRS sway in the
model. This incorporation leads to the distinct time-varying
and nonhomogeneous nature of the ALIP-DRS. Also, we
explicitly consider the discrete robot dynamics at foot-
landing events, which allows us to exploit foot placement in
the controller design to ensure ALIP-DRS’s stability. This
consideration results in the hybrid nature of the ALIP-DRS.
Figure 2 illustrates the three-dimensional (3-D) ALIP-DRS.

A. Contact Angular Momentum during DRS Sway

To analytically extend the classical ALIP from static
ground to swaying DRS, we first mathematically define the
robot’s contact angular momentum during DRS sway.

The contact angular momentum, denoted as LS =
[Lx,S,Ly,S,Lz,S]

⊺, refers to the robot’s total angular momen-
tum about the ground-contact point. We choose LS as a state
variable due to the benefits [18] reviewed in Sec. I.

We use S to denote the contact point on the DRS, which
moves along with the DRS in the inertial world frame. Also,
let m, vCoM , pSC, and LCoM denote the robot’s total mass,
absolute CoM velocity in the world frame, CoM position
relative to the contact point S, and angular momentum about
the CoM, respectively. Then, LS is given by:

LS = LCoM +pSC× (mvCoM). (1)

To derive the dynamics of LS, we introduce the point A,
which is a static point in the world frame that aligns with
S at the given time instant. Further, let pAC and pSA be the
position vectors pointing from A to CoM and from S to
A, respectively. Then, we introduce the angular momentum
about the point A, denoted as LA ∈ R3, which is related to
LCoM through LA = LCoM +pAC× (mvCoM). Thus, we have:

LS = LA +pSA× (mvCoM). (2)

Note that pSA is a zero vector since A and S coincide at the
given time, but its time derivative is not necessarily zero due
to the nontrivial movement of S in the world frame.
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B. Continuous-Phase Dynamics of ALIP-DRS

During the continuous phase of bipedal walking, one foot
contacts the ground while the other swings in the air.

1) Dynamics of contact angular momentum LS: To model
the dynamics of LS, we first derive that for LA. As L̇A equals
the sum of the external moments about point A, we have:

L̇A = pAC× (mg)+ τττA = pSC× (mg)+ τττA, (3)

where g = [0,0,−g]⊺ is the gravitational acceleration with
magnitude g and τττA = [τA,x,τA,y,τA,z]

⊺ ∈ R3 is the external
torque that is applied to the contact point.

Next, we take the time derivative of both sides of (2),
yielding L̇S = L̇A + ṗSA× (mvCoM)+pSA× (mv̇CoM). Since
pSA = 0 with 0 a zero verctor with an appropriate dimension
and ṗSA = −ṗS with pS = [xS,yS,zS]

⊺ ∈ R3 the absolute
position of the point S, this equation becomes:

L̇S = L̇A− ṗS× (mvCoM). (4)

Combining (3) and (4) gives the dynamics equation of LS:

L̇S = pSC× (mg)+ τττA− ṗS× (mvCoM). (5)

Here we assume that the CoM velocity is parallel to the
DRS velocity at point S. This helps prevent leg overstretch
during surface motion, and simplifies the robot model by
leading to ṗS× (mvCoM) = 0. Thus, (5) becomes:

L̇S = pSC× (mg)+ τττA. (6)

As the toe joints of Digit’s support foot are disabled to
simplify the treatment of foot-ground contact as reviewed in
Sec. I, we have τA,x = τA,y = 0. Then, the scalar form of (6)
in x- and y-directions is given by:[

L̇x,S
L̇y,S

]
=

[
−mgySC
mgxSC

]
. (7)

2) Dynamics of CoM position pSC: By definition, the
relative CoM velocity ṗSC is ṗSC = vCoM − ṗS. Under the
assumption that the CoM velocity is parallel to the DRS
velocity at S and given that the DRS only moves horizontally,
we have żS = 0 and żSC = 0. By expressing vCoM using (1),
the dynamics of the horizontal CoM position is:[

ẋSC
ẏSC

]
=

[ 1
mH Ly,S
−1
mH Lx,S

]
−
[

ẋS(t)
ẏS(t)

]
−
[ 1

mH Ly,CoM
−1
mH Lx,CoM

]
, (8)

where Lx,CoM and Ly,CoM are LCoM’s horizontal elements.
3) Continuous-phase ALIP-DRS dynamics: As robots do

not typically demonstrate significant angular momentum
about the CoM during walking, we consider LCoM = 0 [18].
Then, based on (7) and (8), the ALIP-DRS dynamics in the
sagittal and frontal planes are respectively expressed as:[

ẋSC
L̇y,S

]
︸ ︷︷ ︸
=:ẋ

=

[
0 1

mH
mg 0

]
︸ ︷︷ ︸

=:Ax

[
xSC
Ly,S

]
︸ ︷︷ ︸
=:x

+

[
−ẋS(t)

0

]
︸ ︷︷ ︸

=:fx(t)

and (9)

[
ẏSC
L̇x,S

]
︸ ︷︷ ︸
=:ẏ

=

[
0 − 1

mH
−mg 0

]
︸ ︷︷ ︸

=:Ay

[
ySC
Lx,S

]
︸ ︷︷ ︸
=:y

+

[
−ẏS(t)

0

]
︸ ︷︷ ︸

=:fy(t)

. (10)

Fig. 3. Illustration of foot-landing time instants. T+
k−1 and T−k are the start

and end time instants of the current walking step, respectively. The next
walking step begins at t = T+

k and ends at T−k+1.

Remark 1 (Periodic DRS sway): This study considers
DRS motions ẋS(t) and ẏS(t) that are continuously dif-
ferentiable and periodic with ẋS(t) = ẋS(t + Tx,DRS) and
ẏS(t)= ẏS(t+Ty,DRS) for any t > 0. Here Tx,DRS and Ty,DRS are
the least periods. To highlight the explicit time dependence
of ẋS(t) and ẏS(t), their expressions keep the time argument.

Note that the continuous-phase ALIP-DRS model in (9)
and (10) is explicitly time-varying and nonhomogeneous
due to the presence of the time-varying forcing terms fx(t)
and fy(t). These terms are induced by the horizontal DRS
motion ẋS(t) and ẏS(t). This time-varying and nonhomoge-
neous property is fundamentally different from existing LIP
models, which are further discussed later in Remark 2.

C. Discrete Foot-Switching Model of ALIP-DRS

To derive the time evolution of the CoM position (xSC,
ySC) and contact angular momentum (Lx,S, Ly,S) across a
foot-landing event, we consider the kth landing event at the
time instant T−k for any k ∈ N, as illustrated in Fig. 3. We
use (·)− and (·)+ to denote the values of (·) just before and
after a foot-landing instant, respectively.

1) Impact invariance of contact angular momentum LS:
Upon completing one walking step, the swing foot touches
the walking surface while the old support foot begins to
swing. Thus, there is a sudden change in the contact-point
position, as illustrated in Fig. 2.

Let LS,k denote the value of the angular momentum LS
about the kth contact point. This contact point is initiated at
the (k−1)th landing at T−k−1. Let LS,k+1 represent the angular
momentum about the new (k+1)th contact point initiated at
T−k . At T−k , L−S,k+1 and L−S,k are related through:

L−S,k+1 = L−S,k +p(k+1)→k× (mv−CoM), (11)

where p(k+1)→k is the position vector pointing from the (k+
1)th to the kth contact point.

As the robot walks on a horizontal terrain with zero ver-
tical CoM velocity (i.e., żSC = 0) [18], we have p(k+1)→k×
(mv−CoM) = 0, leading to L−S,k+1 = L−S,k. Meanwhile, since
the kth landing impact results in zero impulse torque about
the (k+1)th contact point, LS,k+1 remains unchanged across
the kth landing event; that is, L+

S,k+1 = L−S,k+1. Thus, the
robot’s contact angular momentum LS is invariant to the
landing impact, with L+

S,k+1 = L−S,k. Then, the changes in the
contact angular momenta across a foot-landing event satisfy
∆Ly,S := L+

y,S−L−y,S = 0 and ∆Lx,S := L+
x,S−L−x,S = 0.

2) Jump in relative CoM position: At a foot-landing
event, the horizontal CoM position (xSC, ySC) jumps because
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the horizontal contact-point position (xS, yS) jumps (Fig. 2).
We use ∆xSC and ∆ySC to denote such changes in xSC and ySC,
respectively; that is, ∆xSC := x+SC−x−SC and ∆ySC := y+SC−y−SC.

Using ux and uy to denote the step lengths along the x-
and y-directions, we obtain the discrete open-loop dynamics
of xSC and ySC as: ∆xSC = −ux and ∆ySC = −uy. Note that
p(k+1)→k = [−ux,−uy,0]⊺ for a horizontal, swaying DRS.

Here we treat the footstep position (ux,uy) as the dis-
crete control input to the proposed ALIP-DRS model, to
be designed later. This treatment allows us to explicitly
and systematically consider foot placement in the stability
analysis and control of the ALIP-DRS model.

3) Discrete dynamics: In summary, the discrete portion
of the open-loop ALIP-DRS dynamics is expressed as:[

∆xSC
∆Ly,S

]
︸ ︷︷ ︸

=:∆x

=

[
−1
0

]
︸ ︷︷ ︸
=:bx

ux
and

[
∆ySC
∆Lx,S

]
︸ ︷︷ ︸

=:∆y

=

[
−1
0

]
︸ ︷︷ ︸
=:by

uy.
(12)

D. Open-loop Hybrid ALIP-DRS Model

From the continuous-phase dynamics in (9) and (10) and
the discrete one in (12), we know the sagittal and frontal
subsystems of the ALIP-DRS share the same structure. For
brevity and without loss of generality, we primarily focus
on the sagittal-plane subsystem in the controller design and
stability analysis for the ALIP-DRS model. Combining the
sagittal components of those three equations gives the state-
space form of the open-loop ALIP-DRS system as:{

ẋ = Axx+ fx(t), if t ̸= T−k ;
∆x = bxux, if t = T−k .

(13)

Remark 2 (Time-varying and nonhomogeneous ALIP-
DRS): Equation (13) reveals that the open-loop ALIP-DRS
dynamics is linear, hybrid, time-varying, and nonhomoge-
neous. The ALIP-DRS is fundamentally different from the
existing LIP [8], H-LIP [35], and ALIP [18], which are time-
invariant and nonhomogeneous since they consider static
terrains. With a stationary ground, fx(t)= 0 holds, and ALIP-
DRS’s continuous part reduces to the existing ALIP. Further,
the ALIP-DRS is distinct from the existing time-varying LIP
models for vertically moving surface [49], [50] and variable
CoM height [14], which are all homogeneous.

III. ALIP-DRS FOOTSTEP CONTROL AND STABILITY
ANALYSIS

This section introduces the discrete footstep control and
stability analysis for the ALIP-DRS. The controller serves as
the higher-layer planner of a hierarchical control framework,
which indirectly stabilizes the unactuated dynamics of an
underactuated walking robot, as detailed in Sec. IV.

The design of this controller builds upon the existing
footstep controller [18], adapting it from the classical ALIP
model to the proposed ALIP-DRS model, as discussed in
subsection A. Given that the ALIP-DRS is time-varying
and nonhomogeneous in contrast to the time-invariant and
homogeneous nature of the classical ALIP, the previous

stability conditions are not suitable for ALIP-DRS. Thus,
new conditions are introduced in subsections B and C.

A. Discrete-Time Foot Placement Control

The objective of the discrete-time footstep control is to
find the expression of the foot-landing position ux such that
the hybrid ALIP-DRS system in (13) is provably stabilized.

The key idea of the controller is by adjusting the swing-
foot landing location at the end of the current step (e.g., t =
T−K ), the contact angular momentum at the end of the next
step (e.g., t = T−K+1) can be regulated. These time instants
are illustrated in Fig. 3.

1) Solution to the continuous-phase ALIP-DRS dynamics:
From the linear system theory, the solution of (9) is:[

xSC(t2)
Ly,S(t2)

]
= eAx(t2−t1)

[
xSC(t1)
Ly,S(t1)

]
+

[
Vx,1
Vx,2

]
(14)

on t ∈ [t1, t2], for any t1, t2 > 0. Here, [Vx,1(t1, t2),Vx,2(t1, t2)]⊺ :=
Vx(t1, t2) :=

∫ t2
t1 eAx(t2−τ)fx(τ)dτ.

This study considers known DRS motion, and thus fx(t)
is known for any t > 0. Then, since fx(t) is known, the value
of Vx(t1, t2) can be readily computed for any t1, t2 > 0.

2) Expressing pre-impact contact angular momentum at
t = T−k+1: From the second row of (14), the contact angular
momentum at the end of the next step, Ly,S(T−k+1), is related
to that at the beginning of the next step, Ly,S(T+

k ), through:

Ly,S(T−k+1) = mHl sinh(lTstep)xSC(T+
k )

+ cosh(lTstep)Ly,S(T+
k )+Vx,2(T+

k ,T−k+1),
(15)

where l :=
√

g
H and Tstep := Tk+1−Tk is the step duration.

The role switching of the swing and support feet leads to:

xSC(T+
k ) = xSwC(T−k ), (16)

where xSwC is the forward CoM position relative to the swing
foot. Meanwhile, since contact angular momentum is impact
invariant as discussed in Sec. II, we have:

Ly,S(T+
k ) = Ly,S(T−k ). (17)

Then, combining (15)-(17) gives:

Ly,S(T−k+1) = mHl sinh(lTstep)xSwC(T−k )

+ cosh(lTstep)Ly,S(T−k )+Vx,2(T+
k ,T−k+1).

(18)

3) Matching the predicted and desired contact angular
momenta at T−K+1: Let L̄y,S denote the desired contact angu-
lar momentum in the sagittal plane, which can be treated as a
user input. Based on (8) and given the desired forward ALIP-
DRS velocity vdes

x , L̄y,S can be specified as: L̄y,S = mHvdes
x .

From (18), we know that to ensure Ly,S(T−k+1) =
L̄y,S(T−k+1), the swing-foot landing position at the end of the
current step T−k should be:

xSwC(T−k ) =
L̄y,S(T−k+1)−Vx,2(T+

k ,T−k+1)− cosh(lTstep)Ly,S(T−k )

mHl sinh(lTstep)
.

(19)
In (19), Vx,2(T+

k ,T−k+1) can be directly computed as men-
tioned earlier. The terms cosh(lTstep) and mHl sinh(lTstep)
are known since l, Tstep, m, and H are known parameters
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Fig. 4. Computation of the swing-foot landing location for the end of the
current walking step at T−k . The ALIP-DRS state at the current time step t
(x(t) and y(t)) and the nominal DRS motion profile (xS(t), yS(t)) are used
to compute the estimated pre-impact contact angular momentum (Lx,S(T−k ),
Ly,S(T−k )) based on (14) and (27). This prediction and the corresponding
user-specified desired angular momentum (L̄x,S(T−k+1), L̄y,S(T−k+1)) are used
to compute the swing-foot placement (xSwC(T−k ), ySwC(T−k )). Here Vy,2,
L̄y,S, and ySwC are counterparts of Vx,2, L̄x,S, and xSwC for the frontal plane.

of ALIP-DRS. Also, Ly,S(T−K ) can be computed based on
the second row of (14) with t1 = Tk−1 and t2 = Tk. Thus,
the forward foot-landing position at the end of the current
step, xSwC(T−k ), can be readily calculated. The procedure for
computing xSwC(T−k ) is illustrated in Fig. 4.

4) Expressing discrete-time footstep control law ux:
Recall ux(T−k ) = xSC(T−k )− xSwC(T−k ) (see Fig. 2). Then,
the discrete footstep control law at the kth landing is:

ux(T−k ) = xSC(T−k )

−
L̄y,S(T−k+1)−Vx,2(T+

k ,T−k+1)− cosh(lTstep)Ly,S(T−k )

mHl sinh(lTstep)
.

(20)

B. Closed-loop ALIP-DRS model

Combining (9), (12), and (20) yields the following closed-
loop ALIP-DRS system:{

ẋ = Axx+ fx(t), t ̸= T−k ;
∆x = Bxx−+gx(t), t = T−k ,

(21)

where

Bx =

[
−1 − cosh(lTstep)

mHl sinh(lTstep)

0 0

]
and gx(T−k )=

[
L̄y,S(T

−
k+1)−Vx,2(T

+
k ,T−k+1)

mHl sinh(lTstep)

0

]
.

1) Periodic solution to the closed-loop ALIP-DRS system:
As the DRS of interest to this study sways periodically
(Remark 1), we focus on periodic solutions of the closed-
loop ALIP-DRS system in (21), which corresponds to cyclic
walking motions. We use ψψψx(t) to denote the periodic
solution with a least period of Tsys, i.e., ψψψx(t) = ψψψx(t+Tsys)
for any t > 0. To analyze the stability of ψψψx(t) under the pro-
posed footstep control law, we introduce the homogeneous
system associated with the ALIP-DRS in (21).

2) Homogeneous system associated with ALIP-DRS: To
analyze the stability of linear time-varying nonhomogeneous
hybrid systems, which include the closed-loop ALIP-DRS
system in (21), we need to consider their corresponding
homogeneous systems [53]. The homogeneous system as-
sociated with (21) is given as:{

ż = Axz−, t ̸= T−k ;
∆z = Bxz−, t = T−k ,

(22)

where z is the state vector of the homogeneous system.

Fig. 5. Illustration of the periods of the walking step (Tstep), forward DRS
motion (TDRS), and solution of the closed-loop ALIP-DRS system (Tsys).
This study considers both the special case where Tsys = Tstep = Tx,DRS and
the general case where Tsys = N1Tstep = N2Tx,DRS for any N1,N2 ∈ N.

3) Monodromy matrix under the special case where
Tx,DRS = Tstep = Tsys: When the least periods of the DRS
motion and the periodic solution are equal to the duration of
one walking step (i.e., Tx,DRS = Tsys = Tstep), the monodromy
matrix [53] of the homogeneous system, denoted as Mx, is
expressed as:

Mx = (I+Bx)eAxTstep

=

[
−cosh(lTstep) − cosh2(lTstep)

mHl sinh(lTstep)

mHl sinh(lTstep) cosh(lTstep)

]
,

(23)

where I is an identity matrix with an appropriate dimension.
The eigenvalues of Mx, denoted as λx,1 and λx,2, can be

calculated as: λx,1 = λx,2 = 0.
Remark 3 (Interpretation of the monodromy matrix):

Based on the ALIP-DRS equation in (21) and the definition
of the monodromy matrix Mx in (23), Mx relates the post-
impact state values x(T+

k−1) and x(T+
k ) as:

x(T+
k ) = Mxx(T+

k−1)+ Ṽx(T+
k−1,T

−
k ), (24)

where Ṽx := (I+Bx)Vx(T+
k−1,T

−
k ). Equation (24) is the step-

to-step dynamics [35] of the ALIP-DRS. When the ground
is static, Ṽx(T+

k−1,T
−

k ) becomes zero, and (24) reduces to
the step-to-step dynamics of the ALIP for static terrain.

4) Monodromy matrix under the general case where
N1Tstep = N2Tx,DRS = Tsys: The rest of this paper considers
the general case where N1Tstep = N2Tx,DRS = Tsys for any
N1,N2 ∈ N. Under this general case, the ratio between the
DRS motion period and one walking-step duration can be
any real positive number, instead of one as in the special
case. Figure 5 illustrates Tstep, Tx,DRS, and Tsys.

Using (24) recursively, we obtain the following step-to-
step dynamics of the closed-loop ALIP-DRS system:

x(T+
k+N1

) = Mxx(T+
k+N1−1)+ Ṽx(T+

k+N1−1,T
−

k+N1
)

=Mx

[
Mxx(T+

k+N1−2)+ Ṽx(T+
k+N1−2,T

−
k+N1−1)

]
+ Ṽx(T+

k+N1−1,T
−

k+N1
)

=M2
xx(T+

k+N1−2)+MxṼx(T+
k+N1−2,T

−
k+N1−1)

+ Ṽx(T+
k+N1−1,T

−
k+N1

)

=...= MN1
x︸︷︷︸

M̄x

x(T+
k )+

N1

∑
i=1

MN1−i
x Ṽ(T+

k+i−1,T
−

k+i).

(25)

Equation (25) shows that the monodromy matrix M̄x of
the homogeneous system for this general scenario is related
to Mx through: M̄x =MN1

x . Thus, the two eigenvalues of M̄x,
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Fig. 6. Overview of the proposed hierarchical control approach. The higher-layer planner generates the desired swing-foot landing locations (xSwC , ySwC)
based on the ALIP-DRS model to help stabilize the unactuated robot dynamics. Subsequently, the middle-layer walking pattern generator plans the desired
trajectories φφφ(s) for the actively actuated joints, ensuring they are compatible with both the ALIP-DRS model and the desired swing-foot landing positions.
Lastly, the lower-layer controller outputs the joint torques τττu to reliably track the full-body trajectories generated by the middle layer.

denoted as λ̄x,1 and λ̄x,2, can be evaluated as:

λ̄x,1 = λ
N1
x,1 = 0 and λ̄x,2 = λ

N1
x,2 = 0. (26)

5) Stability of homogeneous system: With the properties
of the monodromy matrix analyzed, we are now ready to
introduce the stability condition for the homogeneous system
under the general case where N1Tstep = N2Tx,DRS = Tsys.

Proposition 1 (Stability of homogeneous system under
discrete footstep control): Under the general case where
N1Tstep = N2Tx,DRS = Tsys with any N1,N2 ∈ N, the ho-
mogenous system in (22) is exponentially stable under the
proposed discrete footstep control law in (20). ♢

Proof: From Tsys = N1Tstep and the definition of Tstep (i.e.,
Tstep = Tk+1−Tk), we know Tsys satisfies Tsys = Tk+N1 −Tk.
Also, by definition, the matrix Ax is constant. Thanks to
these properties, we can assess the stability of the homo-
geneous system based on the stability theorem of general
linear time-invariant impulsive systems given in Theorem 3.5
of [53]. By that theorem, because the eigenvalues λ̄x,1 and
λ̄x,2 are strictly less than one in modulus under the proposed
discrete control law in (20), the homogeneous system is
exponentially stable under the control law. □

With the stability of the homogeneous system confirmed
in Proposition 1, the exponential stability of the periodic
solution ψψψx(t) for the nonhomogeneous closed-loop ALIP-
DRS system in (21) is discussed next.

C. Closed-Loop Stability Analysis for ALIP-DRS

The closed-loop stability analysis is conducted to verify
the stability of the periodic solution ψψψx(t) of the closed-loop
ALIP-DRS system, as described in (21), under the proposed
footstep controller. The stability of ψψψx(t) is assessed by
applying the stability condition for general linear time-
varying nonhomogeneous hybrid systems, which include the
closed-loop ALIP-DRS system in (21).

Theorem 1 (Exponential stability of ALIP-DRS under
footstep control): Consider the general case where N1Tstep =
N2Tx,DRS = Tsys with any N1,N2 ∈ N. Under the proposed

discrete footstep control law in (20), the periodic solution
ψψψx(t) of the nonhomogeneous hybrid ALIP-DRS system in
(21) is exponentially stable. ♢

Proof: As confirmed in Proposition 1, the homogeneous
system in (22) is exponentially stable under the proposed
discrete footstep control law in (20) for N1Tstep =N2Tx,DRS =
Tsys. Then, by the stability theory of linear nonhomoge-
neous impulsive systems (Theorem 4.2 in [53]), the footstep
controller ensures the exponential stability of ψψψx(t) for the
nonhomogeous ALIP-DRS system in (21). □

From (26), we know that the algebraic multiplicity of
the eigenvalue 0 is two while the geometric multiplicity
is one. Thus, any state x does not necessarily converge to
the periodic solution ψψψx(t) within one period of Tsys but is
guaranteed to converge exactly to ψψψx(t) within 2Tsys.

IV. HIERARCHICAL CONTROL FRAMEWORK

This section presents the proposed hierarchical control
framework designed to achieve stable underactuated walking
during DRS sway. The key novelty of the framework lies in
its utilization of the proposed ALIP-DRS footstep control
law as a higher-layer footstep planner.

As shown in Fig. 6, the framework is structured into
three layers to ensure the computational efficiency for real-
time motion generation while guaranteeing stability for the
complex full-order dynamics of underactuated humanoid
walking on DRS. Its higher-layer footstep planner uses the
proposed ALIP-DRS footstep controller in (20) to generate
the desired footstep locations in real-time.

The middle layer produces the task-space reference tra-
jectories for the full-order robot model that agree with
the desired footstep positions supplied by the higher layer.
These trajectories conform to the simplifying assumptions
of the ALIP-DRS model, such as parallel velocities for the
CoM and the support point, which minimizes discrepancies
between the reduced-order ALIP-DRS and the full-order
robot model. This alignment ensures that the desired footstep
positions provided by the higher layer are physically feasible
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for the actual robot to follow, indirectly supporting the
stabilization of the full-order underactuated robot model, as
detailed in the next section.

The lower-layer controller ensures that the actual robot
faithfully executes the planned full-body trajectories.

The overall stability of the complete full-order system
under this hierarchical control framework is analyzed and
verified in Sec. V.

A. Higher-Layer ALIP-DRS Footstep Planner

This subsection introduces the higher-level planner, which
generates the desired CoM and foot-landing positions based
on the ALIP-DRS model.

The desired CoM position trajectories along the x- and
y-directions are set as the solutions of the ALIP-DRS model
in the sagittal and frontal planes, respectively. The desired
CoM position in the x-direction is given in (14). From the
frontal ALIP-DRS model in (10), its solution between [t1, t2]
for any t1, t2 > 0 is:[

ySC(t2)
Lx,S(t2)

]
= eAy(t2−t1)

[
ySC(t1)
Lx,S(t1)

]
+

[
Vy,1(t1, t2)
Vy,2(t1, t2)

]
, (27)

where [Vy,1(t1, t2),Vy,2(t1, t2)]⊺ :=Vy(t1, t2) :=
∫ t2

t1 eAy(t2−τ)fy(τ)dτ.
The discrete footstep control law of the ALIP-DRS model

is used to determine the desired foot-landing locations for the
actual full-dimensional robot. This controller directly stabi-
lizes the reduced-order ALIP-DRS model, thus contributing
to the stabilization of the actual dynamics of the unactuated
variables x and y as explained in Sec. V.

The desired forward landing position is given by (20). As
the ALIP-DRS dynamics in the sagittal and frontal planes
share the same structure, the desired lateral landing location
is planned in a way similar to the sagittal-plane footstep
controller design introduced in Sec. III. Analogous to (19),
the lateral CoM location relative to the swing foot at the end
of the current step is expressed as:

ySwC(T−k )=
−L̄x,S(T−k+1)+Vy,2(T+

k ,T−k+1)+ cosh(lTstep)Lx,S(T−k )

mHl sinh(lTstep)
,

(28)
where L̄x,S is the desired contact angular momentum.

Accordingly, the discrete footstep control law for the
frontal plane, at the kth landing event, is given by:

uy(T−k ) =ySC(T−k )

−
−L̄x,S(T−k+1)+Vy,2(T+

k ,T−k+1)+ cosh(lTstep)Lx,S(T−k )

mHl sinh(lTstep)
.

(29)
The value of L̄x,S(T−k+1) can be determined based on the

previous approach used for walking on static terrain [54],
which produces a zero average lateral speed. By setting
L̄x,S(T−k+1) based on (10) to allow a periodic lateral motion
with a desired step width W , L̄x,S is given by:

L̄x,S =


1
2 mHW l sinh(lTstep)

1+cosh(lTstep)
(right-foot-in-support);

− 1
2 mHW l sinh(lTstep)

1+cosh(lTstep)
(left-foot-in-support).

(30)

Fig. 7. Illustration of Digit’s leg joints from a) the front view and b) the side
view. The joints highlighted in green, specifically the toe joints, are active
during the swinging phase of the corresponding leg but are deactivated
upon ground contact. The side view additionally depicts the three closed-
loop linkages, which are governed by holonomic constraints.

B. Middle-Layer Walking Pattern Planner

This subsection explains the middle-layer planner, with
the Digit robot as an illustrating example. This layer aims to
generate reference trajectories for the full-order robot model
that are compatible with the ALIP-DRS model and align
with the desired footstep locations determined by the higher-
layer planner. These trajectories then serve as inputs to the
lower-layer controller, as described in Subsection C.

1) Degree of underactuation: To introduce the design
of the desired full-dimensional reference trajectories, we
first determine the number of DoFs that can be directly
commanded (i.e., conversely, the degree of underactuation).

At a floating-base configuration where the robot is de-
tached from the ground, the Digit robot has 36 DoFs, which
includes the 6 DoFs from the floating-base coordinates. An
illustration of Digit’s revolute joints is given in Fig. 7.

One set of six holonomic constraints are formed at the
foot-ground contact region when the contact is full and static.
Another set of ten holonomic constraints are induced by
the kinematic structure of the Digit robot, including: (i) two
passive shin joints, with joint angles q5 (left leg) and q20
(right leg), which are both treated as rigid joints due to their
high stiffness; (ii) two heel springs (q21 and q6) on both
legs, which are considered as rigid links given their high
stiffness; and (iii) three closed-loop linkages on each leg,
which are used to actuate the passive joints and inherently
possess three holonomic constraints per leg.

Under these holonomic constraints, Digit’s number of
DoFs during walking is: DoF = 36−6−10 = 20.

The robot has 20 independent joint actuators. To enable
point contact for aligning with the ALIP-DRS model, the
Toe-A and Toe-B joints (see Fig. 7) of the support foot are
deactivated. Thus, the robot has 18 active actuators.

Given that the number of active actuators, denoted as na,
is 18, we know na = 18 < DoF. Thus, the Digit walking is
underactuated, with two degrees of underactuation. The re-
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sulting four-dimensional unactuated subsystem corresponds
to the ALIP-DRS model in the saggital and frontal planes.

2) Full-dimensional control variable selection: With 18
active actuators, 18 control variables can be directly com-
manded. Leaving the ALIP-DRS state x and y uncontrolled,
the control variables hc ∈ R18 are chosen as:

hc(q) =



zSC(q)
γγγTr

xSw(q)
ySw(q)
zSw(q)
γγγSw(q)
qupper


. (31)

Here, q∈Q is the generalized coordinates, with Q⊂R36 the
configuration space. γγγTr ∈ R3 is the trunk orientation. xSw
and ySw are the swing-foot positions relative to the CoM in
the x- and y-directions, respectively, while zSw is the absolute
swing-foot height. γγγsw(q)∈R3 is the swing-foot orientation.
qupper ∈ R8 is the upper-body joint angles.

We choose to directly regulate the CoM height zSC to
be constant, so as to align the actual CoM height with the
ALIP-DRS model. Also, we control the trunk orientation
γγγTr to maintain an upright posture, and keep the upper-
body joint angles qupper fixed for simplicity and for avoiding
unexpected arm movements. Finally, controlling the swing-
foot position (xSw, ySw, and zSw) enables the actual robot to
accurately execute the desired footstep locations provided by
the higher-layer planner.

3) Full-body trajectory generation: Let φφφ denote the
desired trajectories of hc, with φφφ =: [φ1,φ2, ..., φ18]

⊺ ∈R18.
We utilize Bézier polynomials [21] encoded by a time-
based phase variable s [30] to design φφφ . The encoding
variable s represents how long a walking step has progress
within a walking step, and is defined as s := t−Tk−1

Tstep
for

t ∈ [Tk−1,Tk). The Bézier polynomial φi is defined as φi(s) :=
∑

M
j=0 αi, j

M!
j!(M− j)! s j(1− s)M− j, where M represents the user-

specified order of the polynomial and αi, j is the coefficient
of the jth term. An example of φφφ is given in Sec. VII-A.

Based on the desired footstep locations generated by the
higher-layer planner as well as the robot’s current actual
states, the middle layer continuously updates the Bézier
coefficients of φ5(s) and φ6(s), which are the desired swing-
foot trajectories for xSw and ySw, respectively. The update
procedure at time step t is outlined in Algorithm 1, where
the value of a variable (·) at t is denoted by (·)t .

C. Lower-Layer Feedback Control

This subsection describes the feedback controller designed
to track the desired trajectories planned by the middle layer.

Various existing control techniques can be utilized to
construct the lower-level controller to ensure reliable tra-
jectory tracking. In this study, we employ the input-output
linearizing control approach, which is inspired by the Hybrid
Zero Dynamics (HZD) framework [21], as explained next.

1) Input-output linearizing control: The input-output lin-
earizing control law has been previously implemented in

Algorithm 1 Pseudocode for updating the Bézier polynomial
coefficients at time step t based on ALIP-DRS planner
while True do

At time step t, obtain the current generalized coordinates
qt of the full-order robot.
if s=0 then

Assign the current swing-foot position in the x- and
y-directions to α5,0 and α6,0:

α5,0 ← xSw(qt), α6,0 ← ySw(qt).
end
if 0≤ s≤ 1 then

Convert qt into the current ALIP-DRS state:
xt ← x(qt), yt ← y(qt).

Compute the pre-impact angular momentum
Ly,S(T−k ) and Lx,S(T−k ) using (14) and (27), based
on xt , yt , and known DRS motion.
Compute (xSwC(T−k ), ySwC(T−k )) using (19) and (28).
Assign the planned swing-foot landing locations
(xSwC(T−k ), ySwC(T−k )) to the appropriate Bézier co-
efficients of φ5 and φ6:

α5,M ←−xSwC(T−k ), α6,M ←−ySwC(T−k ).
Assign α5,1,...,α5,M−1 as the linear interpolation be-
tween α5,0 and α5,M .
Assign α6,1,...,α6,M−1 as the linear interpolation be-
tween α6,0 and α6,M .

else
No update on α5,0,...,α5,M and α6,0,...,α6,M .

end
end

simulations for humanoid walking on static surface [30] and
quadrupedal robot walking during vertical DRS motion [51].

This controller uses the full-order continuous-phase robot
model to exactly linearize the dynamics of the output func-
tion, and then shapes the output function dynamics based
on the well-studied linear system theory. To ensure accurate
trajectory tracking, we choose the output function as the
tracking error h defined as h := hc−φφφ .

Using Lagrange’s method, we can obtain the continuous-
phase full-order model as:

M(q)q̈+ c(q, q̇) = Bτττu +J⊺c fc, (32)

where M is the inertia matrix, c is the sum of the grav-
itational, Coriolis, and centrifugal terms, B is the input-
selection matrix, and τττu is a joint-torque vector. fc is the
force vector that enforces the 16 holonomic constraints
mentioned earlier, which includes the ground-reaction force.
Jc(q) is a Jacobian matrix associated with those holonomic
constraints, whose expression is omitted for brevity.

The robot’s 16 holonomic constraints are expressed as:

Jcq̈+ J̇cq̇ = p̈c(t). (33)

Here the time-varying vector pc(t) is defined as pc(t) :=
[p⊺

S(t),γγγ
⊺
S(t),0]

⊺, where pS(t) and γγγS(t) are the position and
orientation of the foot-surface contact region that reside in
the DRS, respectively, and the dimension of 0 is 1×10. The
zero vector corresponds to the ten holonomic constraints in
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Digit’s kinematic structure, as explained in subsection B.
Integrating (32) and (33), we obtain:

M(q)q̈+ c̄(t,q, q̇) = B̄τττu, (34)

where c̄ := c− J⊺c (JcM−1J⊺c )−1(JcM−1c− J̇cq̇+ p̈c(t)) and
B̄ := B−J⊺c (JcM−1J⊺c )−1(JcM−1B) [27].

Due to the nonlinearity of this full-order dynamics model,
the output-function dynamics is also nonlinear. To linearize
the output-function dynamics, the input-output linearizing
control law is expressed as:

τττu =
(

∂hc
∂q M−1B̄

)−1
[(

∂hc
∂q

)
M−1c̄+v− ∂

∂q
(

∂hc
∂q q̇

)
q̇+ 1

T 2
step

∂φφφ

∂ s2

]
,

(35)
where the function v is designed later. Note that hc can be
chosen such that there exists an open subset of the robot’s
configuration space Q on which ∂hc

∂q M−1B̄ j is invertible.
By applying the control law in (35), we obtain the linear

closed-loop dynamics of the output function h during a
continuous phase: ḧ = v. Without of loss of generality, v
can be chosen as a stabilizing proportional derivative (PD)
controller. That is, v = −Kph−Kd ḣ, with the PD gains
Kp and Kd tuned to ensure the closed-loop stability of the
output-function dynamics given by ḧ+Kd ḣ+Kph = 0.

Although the input-output linearizing control approach
explicitly addresses the nonlinear full-order model in (34),
its effectiveness relies on the model’s accuracy. Due to
the presence of springs in the Digit robot (Fig. 7), there
is a notable mismatch between the model and the actual
robot dynamics. Thus, this study also considers an inverse
kinematics approach [55] as a candidate low-level controller.

2) Inverse kinematics approach: The closed-form inverse
kinematics approach is independent of a robot’s dynamics
model, and thus can be more robust than the input-output
linearizing controller in (35), even in the presence of Digit’s
springs. As the original inverse kinematics approach [55] is
designed for fully actuated robots, we adapt it to underac-
tuated walking robots as follows.

Let qa ∈ R18 denote the angles of all actively actuated
joints. Then qa = Baq with Ba a constant selection matrix.

The inverse kinematics controller treats the velocities of
the actuated joints, q̇a, as control inputs, which can be
directly set to any arbitrary values within the joint limits
to command qa. The objective of the controller is to make
the closed-loop output-function system stable and first-order,
with a linear form of ḣ(q, q̇)+κκκh(q) = 0, where κκκ∈ R18×18

is a positive-definite control gain matrix.
By the definition of the output function h, we know ḣ =

ḣc− φ̇φφ , and this first-order system can be re-written as:

Jhc(q)q̇ = φ̇φφ −κκκh(q), (36)

where Jhc(q) := ∂hc(q)
∂q ∈ R18×36. Since Jhc is not invertible,

we cannot directly use this equation to solve for the reference
velocities q̇ (which contains q̇a).

The non-invertibility of Jhc is essentially due to the
underactuation induced by Digit’s passive support-toe joints
as well as the presence of the 16 holonomic constraints in
Digit’s kinematic structure. Thus, to solve for q̇, we map
q̇ into the passive support-toe velocities q̇Toe ∈ R2 while

explicitly expressing the holonomic constraints using q̇.
Mapping q̇ into q̇Toe, we obtain SToeq̇ = q̇Toe, where

SToe ∈ R2×36 is a known constant selection matrix. Mean-
while, to respect the 16 holonomic constraints, q̇ needs to
satisfy Jc(q)q̇ = ṗc(t), which corresponds to (33). Combin-
ing these two equations with (36) gives:

JIK(q)q̇ = vIK(t,q, q̇) :=

φ̇φφ −κκκh(q)
ṗc(t)
q̇Toe

 , (37)

where JIK(q) := [J⊺hc
(q),J⊺c (q),S⊺

Toe]
⊺ ∈ R36×36. Note that

we can select the control variables hc such that JIK(q) is
invertible on Q. Thus, the velocity command q̇a is given by:

q̇a = BaJ−1
IK (q)vIK(t,q, q̇). (38)

Since the actual robot is directly actuated by joint torques
instead of joint velocities, we construct a PD joint-torque
controller as inspired by [27], which treats the joint velocity
command in (38) as the desired velocities denoted as qa,d .
Then, from (38), we have qa,d = BaJ−1

IK (q)vIK(t,q, q̇).
Thus, the PD joint-torque controller is designed as:

τττu =−K̄p(qa−qa,d)− K̄d(q̇a− q̇a,d), (39)

where K̄p,K̄d ∈R18×18 are PD matrices to be appropriately
tuned. This controller is experimentally implemented on the
physical Digit robot, as described in Sec. VII.

V. STABILITY ANALYSIS FOR FULL-ORDER MODEL

This section presents the stability analysis for the hybrid
closed-loop full-order system under the proposed framework.

The stability of the closed-loop full-order system needs
to be analyzed, as it is not automatically guaranteed by the
proposed control framework. This necessity arises because
the framework does not explicitly treat the inevitable inaccu-
racy in the ALIP-DRS model. While the higher-layer planner
of the framework stabilizes the ALIP-DRS model, which
approximates the unactuated dynamics, it does not directly
stabilize the complete nonlinear model of the unactuated
subsystem. Meanwhile, the lower-layer controller regulates
the fully actuated output-function dynamics but does not
directly influence the unactuated subsystem.

Given the nonlinear and hybrid nature of the full-order
robot model, the proposed stability analysis employs Lya-
punov functions [56]. Without loss of generality, this anal-
ysis assumes that the framework’s lower layer is the input-
output linearizing controller detailed in (35). The analysis
considers the general case where N1Tstep = N2Tx,DRS = Tsys.

A. Closed-loop Error Dynamics

1) State definition: Let X denote the state of the full-order
control system, comprising state variables of the unactuated
dynamics, which is approximated by the ALIP-DRS model,
and the directly controlled output-function dynamics.

We compactly denote the output function state as xh ∈
R2na , and define it as xh :=

[
h⊺(t,q), ḣ⊺(t,q, q̇)

]⊺. Recall
na = 18 for the underactuated Digit, as explained earlier.
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Correspondingly, we introduce a new state xη ∈ R4 to
denote the tracking error state associated with the unactuated
ALIP-DRS state: xη :=

[
x⊺(q), y⊺(q)

]⊺−ψψψ(t), where ψψψ(t)
is the periodic solution to the closed-loop ALIP-DRS model.

Then, the complete state is defined as: X :=
[
x⊺h , x⊺η

]⊺
.

2) Hybrid, nonlinear full-order closed-loop dynamics:
Based on the proposed low-level control law, the hybrid
closed-loop ALIP-DRS model, and the output-function dy-
namics model, the closed-loop full-order dynamics is:

{
ẋh = Ahxh

ẋη = Aη xη +dA
if t ̸= T−k ;{

x+h = ∆∆∆h(t,x−h ,x
−
η )

x+η = ∆∆∆η x−η +d∆

if t = T−k ,

(40)

where k ∈ N, Ah :=
[

0 I
−Kp −Kd

]
, and Aη :=

[
Ax 0
0 Ay

]
.

The vector-valued nonlinear function ∆∆∆h is the reset map of
xh, which can be readily obtained based on the definition of
xh and the reset map of the robot’s generalized coordinates
and velocities given in [21]. The constant matrix ∆∆∆η is

defined as ∆∆∆η :=
[

Bx 0
0 By

]
with By the frontal-plane coun-

terpart of Bx. dA and d∆ represent the discrepancies between
the reduced-order ALIP-DRS and the full-order model.

Here, ∥dA∥ and ∥d∆∥ are assumed to be bounded above by
positive, real numbers LA and L∆: ∥dA∥ ≤ LA and ∥d∆∥ ≤ L∆

for any bounded initial state satisfying X(0)∈Brd (0) := {X :
∥X∥ ≤ rd}, where rd is a real positive constant.

Without loss of generality, the stability analysis considers
the kth gait cycle on t ∈ (Tk,Tk+1) with k ∈ N, which com-
prises a continuous phase on t ∈ (Tk,Tk+1) and a switching
event at t = T−k+1. For brevity, the values of a variable ⋆ at
t = T+

k and t = T−k are denoted as ⋆|+k and ⋆|−k , respectively.

B. Lyapunov Function Candidate

As the full-order robot model comprises unactuated and
fully actuated subsystems, we design the Lyapunov function
candidate V (X) as V (X) = βhVh(xh) + βηVη(xη), where
Vh(xh) and Vη(xη) are positive-definite functions and βh and
βη are positive constants to be designed.

1) Closed-form construction of Vh(xh): We construct the
component Vh(xh) as the Lyapunov function for the closed-
loop, continuous-phase output-function dynamics (i.e., ḧ+
Kd ḣ+Kph = 0). Since the lower-layer controller can stabi-
lize this output-function dynamics with appropriately chosen
PD gains Kp and Kd , the Converse Lyapunov Theorem [56]
implies that the Lyapunov function Vh(xh) exists for this
dynamics. Further, since this dynamics is linear and time-
invariant, the closed-form expression of Vh(xh) can be con-
structed via a Lyapunov equation.

2) Closed-form construction of Vη(xη): We define
Vη(xη) as the Lyapunov function for the closed-loop, step-
to-step ALIP-DRS dynamics. This dynamics is analytically
attractable and is exponentially stabilized by the proposed
footstep controller, as established in Theorem 1. The Lya-
punov equation for general linear discrete-time systems,
which include this dynamics, is employed to derive the

closed-form expression of Vη(xη). Note that the sagittal-
plane component of this dynamics is given in (25), and its
frontal-plane counterpart can be derived similarly.

3) Convergence and Boundedness of Vh and Vη : To
establish the stability condition for the closed-loop system
in (40), we first analyze the convergence and boundedness
of Vh and Vη , as summarized in the following propositions.

Proposition 2 (Continuous-phase convergence of Vh):
Consider the proposed lower-layer control law in (35) and
the closed-loop error dynamics in (40). Also, consider the
condition that the PD gains of the lower-layer control law are
selected such that Ah is Hurwitz. Then, there exist positive
constants rh, ch1, ch2, and ch3 such that the function Vh
satisfies ch1∥xh∥2 ≤Vh(xh)≤ ch2∥xh∥2 and V̇h ≤−ch3Vh on
t ∈ (Tk,Tk+1). Accordingly, Vh exponentially converges as:
Vh|−k+1 ≤ e−c3(Tk+1−Tk)Vh|+k during continuous phases. ♢

The proof of Proposition 2 is a direct adaptation of the
Lyapunov stability theory from [56] and is thus omitted.

Proposition 3 (Step-to-step convergence of Vη ): Consider
the proposed control framework and the closed-loop system
in (40). There exist positive real constants rη , cη1, cη2, and
cη4 and non-negative real number cη3 < 1 such that Vη satis-
fies cη1∥xη∥2 ≤Vη ≤ cη2∥xη∥2 and Vη |+k+1 ≤ cη3Vη |+k +cη4
for any bounded initial state satifying X(0) ∈ Brη

(0). ♢
Proposition 3 holds because by Theorem 2, the proposed

discrete footstep control law is exponentially stabilizing for
the ALIP-DRS model and the inaccuracy of the ALIP-DRS
model (i.e., dA and d∆) are bounded as mentioned earlier.

C. Main Stability Theorem

Based on Propositions 1-3, the stability conditions for the
hybrid error dynamics in (40) are introduced next.

Theorem 2 (Closed-loop stability conditions for the full-
order model): Let all conditions in Propositions 1-3 hold.
If the continuous-phase convergence rates 1

cη3
and ch3 are

sufficiently high, then the origin of the hybrid closed-loop
error system in (40) is locally stable in the sense of Lyapunov
under the proposed control framework. ♢

Rationale of proof: By the theory of multiple Lyapunov
functions [57], the origin of the hybrid closed-loop error
system in (40) is locally stable if: (S1) the “switch-out” value
of the Lyapunov function candidate V (X) is bounded above
by a positive-definite function of the “switch-in” value of
V (X) within each continuous phase and (S2) the values of
V (X) immediately after each switching event satisfy V |+k+1≤
V |+k . To prove Theorem 2, we show that V (X) satisfies these
two conditions if all conditions in Theorem 2 are met.

Proof: We begin the proof by first analyzing the evolu-
tion of the Lyapunov function candidate V (X) for the kth

complete gait cycle on t ∈ (Tk,Tk+1], which comprises one
continuous phase and one switching event.

The continuous-phase boundedness of Vh is given in
Proposition 2. Meanwhile, since the continuous-phase un-
certainty dA in the unactuated dynamics is locally bounded
and the matrix Aη is constant and finite, we know that there
exist positive real constants L1, L2, and r1 such that

Vη |−k+1 ≤ L1Vη |+k +L2 (41)
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holds for any initial state satisfying X(0) ∈ Br1 .
From Proposition 2 and (41), we know the following

inequality holds for any X(0) ∈ Br1(0):

V |−k+1 = βhVh|−k+1 +βηVη |−k+1

≤ βhe−c3(Tk+1−Tk)Vh|+k +βη L1Vη |+k +βη L2

≤ LvV |+k +βη L2,

(42)

where Lv := max(e−c3(Tk+1−Tk),L1). This inequality verifies
that the stability condition (S1) is met.

Since the nonlinear reset map ∆∆∆h is continuously differ-
entiable in t and X [48], we know ∆∆∆h is locally Liptchiz in t
and X [56]. Then, by applying the triangle inequality to the
reset map ∆∆∆h [58], we know there exists positive real scalars
L∆, ε∆, and r∆ such that∥∥∥xh|+k+1

∥∥∥2
≤ Lh

∥∥∥xh|−k+1

∥∥∥2
+Lη

∥∥∥xη |−k+1

∥∥∥2
+ ε∆ (43)

holds for a bounded initial state X(0) ∈ Br∆
(0).

From Propositions 2 and 3 and (41)-(43), we have:

Vh|+k+1 ≤
Lhch2

ch1
e−c3(Tk+1−Tk)Vh|+k +

Lη L1ch2
cη1

Vη |+k + εh, (44)

where εh := ε∆ch2 +
Lη L2ch2

cη1
.

Then, from the definition of V , Proposition 3, and (44),
the step-to-step convergence of V is given by:

V |+k+1 ≤ cv1V |+k + cv2, (45)

where cv1 := max(Lhch2
ch1

e−ch3(Tk+1−Tk),cη3 +
L1Lη βhch2

βη cη1
) and

cv2 := βhεh +βη cη4.
Since βh and βη can be chosen arbitrarily, we know cv2

can be set arbitrarily small, along with L1Lη βhch2
βη cη1

. Mean-
while, we know cη3 < 1. Thus, we can choose βh and βη

such that cη3 +
L1Lη βhch2

βη cη1
is less than one. Meanwhile, by

carefully choosing the PD gains in (35), the continuous-
phase convergence rate ch3 can be sufficiently large such
that Lhch2

ch1
e−ch3(Tk+1−Tk) can be any positive number less than

one. Thus, cv1 < 1 is ensured.
Since both cv1 and cv2 can be any arbitrarily small positive

number with cv1 < 1, V |+k+1 ≤ V |+k is guaranteed for any
k ∈ N and X(0) ∈ Brv(0) with rv = min(rd ,rη ,r∆,r1). Thus,
condition (S2) is met, which completes the proof. □

VI. SIMULATION VALIDATION

This section presents simulations performed on a Digit
robot in MATLAB, validating the proposed approach under
various surface motions and uncertainties.

Simulation validation is necessary as it enables us to
evaluate the proposed framework beyond the physical limi-
tations of hardware experiments, such as the frequency and
magnitude constraints of the DRS movement. The simulation
video is available at: https://youtu.be/NtAT0DFtMCY.

A. Simulation Setup

1) Setup of higher-layer planner: Based on Digit’s iner-
tial and geometric properties, the parameters of the ALIP-
DRS are set as: H = 0.9 m, m = 46.1 kg, Tstep = 0.4 s,

TABLE I
SIMULATION CASES

Cases DRS motion (m) L̄y,S (kg ·m2/s)

A xS(t) = 0.04cos( 2π

0.4 t) 4.1
B xS(t) = 0.14cos( 2π

6 t) 12.5
C yS(t) = 0.06cos( 2π

0.72 t) 0

D xS(t) = 0.04cos( 2π

0.4 t) 6.27
yS(t) = 0.1cos( 2π

6 t)

and W = 0.2 m. As the ALIP-DRS model in (9) indicates,
setting the desired angular momentum L̄y,S is equivalent to
setting the desired forward CoM velocity. For comprehensive
assessment across various desired forward CoM velocities,
different values of L̄y,S are used, as specified in Table I.

2) Setup of middle and lower layers: In MATLAB sim-
ulations, the Bézier polynomials defining the desired full-
dimensional trajectories φφφ are chosen as follows:
• φ1: Set to H so as to enforce the CoM height of the

ALIP-DRS model on the full-order Digit model.
• φ2, φ3, and φ4: Set to 0 for a constant trunk orientation.
• φ5 and φ6: Set according to Algorithm 1.
• φ7: Set with Bézier coefficients [0,0.02,0.07,0.15,

0.07,0.02,0]⊺ to minimize the desired swing-foot
height and reduce swing-foot motion.

• φ8, φ9, and φ10: Set to 0 to ensure a proper swing-foot
orientation at touchdowns.

• φ11 to φ18: Set to 0 to keep the arms static.
In MATLAB, the model-based input-output linearizing

controller is implemented using (35). The full-order dynamic
matrices M and c are obtained using FROST [26]. For all
cases, the control gains are set to Kp = 2500 · I and Kd =
100 · I. To meet the stability condition in Theorem 2, these
gains are tuned to ensure a sufficiently high continuous-
phase convergence rate for the output function state xh.

3) Simulation cases: To assess the control framework
under both a unity ratio and a real-number ratio between
the DRS motion period and one walking-step duration, as
well as under different DRS motion directions, four sets of
DRS motions are simulated, as summarized in Table I. The
detailed descriptions of the surface motions are:
(Case A): DRS sways in the sagittal plane with the same

period as walking (i.e., Tstep = Tx,DRS = 0.4 s).
(Case B): DRS sways in the sagittal plane with its least

period 15 times that of walking (i.e., 15Tstep = Tx,DRS).
(Case C): DRS sways in the frontal plane with its least

period related to the walking period as 9Tstep = 5Ty,DRS.
(Case D): DRS sways with different amplitudes and periods

in the forward and lateral directions. The DRS-walking
period ratios are Tx,DRS/Tstep = 1 and Ty,DRS/Tstep = 15.

In all cases, the robot faces towards the x-axis of the world
frame. The initial movement status of Digit is quite standing.

B. Comparative Simulations

To highlight the effectiveness of the proposed control
framework (denoted as the “DRS framework”), we compare
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Fig. 8. Performance comparison between the proposed DRS framework and the baseline framework under simulation Cases A-D. The beige background
highlights the left-foot-in-support phase, while the white background denotes the right-foot-in-support phase. Under the proposed framework, the robot’s
actual trajectories (labeled “Full-order model trajectory”) align closely with the ALIP-DRS trajectories, and the prediction of angular momentum (AM) at
the end of the current step (green curve) is relatively accurate. In contrast, the robot operating under the baseline framework exhibits instability in Cases
C and D. Additionally, significant discrepancies are observed between the actual trajectory of the contact angular momentum Ly,S and the ALIP trajectory,
and the prediction of Ly,S at the end of the current step lacks the accuracy seen with the proposed framework.

it with a previous ALIP-based framework [18] designed for
static terrain (denoted as the “baseline framework”). Figure 8
displays the simulation results under Cases A-D.

1) Baseline framework setup: The two frameworks have
the same setup of middle and lower layers, including control
variable selection, full-body trajectory parameterization, and
the use of an input-output linearizing controller as the lower
layer. The controller’s PD gains are tuned to guarantee
accurate full-body trajectory tracking. The primary differ-
ence in the setup lies in the higher-layer planner: the DRS
framework explicitly accounts for the DRS motion whereas
the baseline framework assumes a static terrain.

2) Comparison on walking stability: As Fig. 8 indicates,
the proposed DRS framework drives the full-dimensional
trajectories (marked by black, dashed lines) significantly
more closely to the desired trajectories (marked by red, solid
lines), as compared with the baseline framework. The DRS
framework also ensures stable walking across all four cases.
Yet, the baseline framework fails to sustain stable walking
in Cases C and D, causing the robot to fall over laterally.

3) Comparison on angular momentum prediction: The
green curves in Fig. 8 show the predicted angular momentum
at the end of the current walking step. As explained in
Sec. III, at each time step within the current walking step,
the higher-layer planner uses (14) and (27) and the robot’s
current state to compute the predicted angular momentum at
the end of the current walking step. The baseline framework

TABLE II
FORWARD VELOCITY REGULATION PERFORMANCE COMPARISON

Cases
Desired
forward

velocity (m/s)

DRS
framework
error (m/s)

ssssBaseline
sssframework
ss error (m/s)

A 0.1 0.005 0.32
B 0.3 0.13 0.32
C 0 0.002 not stable
D 0.15 0.01 not stable

uses the same equations but with zero ground velocities.
Under the DRS framework, the predicted value of the

contact angular momentum Ly,S at the end of the current
walking step (highlighted in green) is relatively consistent
within each walking step and across different steps. In con-
trast, the baseline framework’s prediction varies significantly.
This improved angular momentum prediction of the pro-
posed framework leads to less variation in the planned foot
placement location during a walking step. Thus, the desired
swing-foot trajectories tracked by the lower-layer controller
are smoother, causing the better tracking performance of the
proposed framework compared to the baseline framework.

4) Comparison on velocity regulation accuracy: Table II
shows the tracking errors for the forward CoM velocity
under the proposed and baseline frameworks across Cases
A-D. It also provides the desired forward CoM velocity
for each case, corresponding to the desired contact angular
momentum Ly,S outlined in Table I. As indicated in the table,
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Fig. 9. Comparison of base-position tracking accuracy between the baseline
and DRS frameworks under Case D. a) The DRS framework demonstrates
higher tracking accuracy in the xDRS-direction compared with the baseline
framework, allowing the robot to remain within the confines of the narrow
walkway. b) Snapshots depict stable walking by Digit using the proposed
DRS framework. c) Under the baseline framework, Digit steps outside the
designated walkway, illustrating reduced tracking accuracy.

the proposed framework achieves velocity tracking errors
ranging from 0.005 m/s to 0.13 m/s across the four cases.
In contrast, the baseline framework shows larger errors,
reaching 0.32 m/s in Cases A and B. For Cases C and D,
the baseline framework’s errors are not reported due to its
inability to maintain stable walking in these scenarios.

5) Comparison on path tracking: By adjusting the desired
angular momenta L̄x,S and L̄y,S, our framework enables the
robot to track the desired position trajectory of its base
(i.e., trunk). Accurate base-position tracking is critical for
collision avoidance in real-world DRS environments, such
as ships, which narrow walkways are common.

Using the mapping from the horizontal CoM velocities to
the contact angular momenta given in (9) and (10), and by
including a position-based feedback term, the desired contact
angular momenta L̄x,S and L̄y,S are adjusted as follows:

L̄x,S = Ky(yb− yb,d)+mHẏb,d and
L̄y,S = Kx(xb− xb,d)+mHẋb,d ,

where xb and yb represent the actual base positions along
the x- and y-axes of the DRS frame, respectively, xb,d and
yb,d denotes the corresponding desired positions, and Kx and
Ky are control gains assigned by the user.

Figure 9 depicts the base-tracking performance of the
Digit robot navigating through a narrow pathway under Case
D. The DRS framework allows Digit to closely track both the
desired walking path and the desired forward velocity within
the DRS frame. However, the robot fails to stay close to the
desired path under the baseline framework.

C. Robustness Assessment

The robustness of the proposed framework is assessed
under various uncertainties.

Fig. 10. Robustness evaluation results of the proposed framework under an
unknown sudden push lasting 0.1 seconds, with DRS motion and desired
robot velocity consistent with Case A, as detailed in Tables I and III. a) Time
evolution of the CoM position and contact angular momentum trajectories,
demonstrating fast convergence following the push. b) Illustration of stable
robot walking before, during, and after push.

Fig. 11. Robustness evaluation results under an unknown 10-kg load, with
DRS motion and desired robot velocity matching Case C, as outlined in
Tables I and III. Subplot a) displays the time evolution of the CoM position
(xSC , ySC) and contact angular momenta (Lx,S, Ly,S) for both the full-order
robot model and the ALIP-DRS model, highlighting their close alignment
and ALIP-DRS’s accuracy even with an unknown external load. Subplot b)
illustrates that the robot maintains stable walking despite forward position
drift induced by the unknown load.

1) Sudden push: An unknown sudden force of 200 N
is horizontally applied to Digit’s chest under Case A. As
shown in Fig. 10, the Digit robot is initially heavily affected
by this unexpected push. However, after taking four steps,
Digit is able to converge back to a close neighborhood of
the desired trajectories, demonstrating the robustness of the
proposed framework against unknown pushes.

2) Unknown load: Figure 11 presents the results for Case
C, where the robot is carrying a box with an unknown weight
of 10 kg. The desired behavior for the robot is to walk in
place on the DRS. Due to the substantial unknown load,
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TABLE III
ACTUAL WALKING SPEED (M/S) UNDER VARIOUS DRS MOTION

UNCERTAINTIES δA AND δt

δA(m)
δt (s) 0 0.13 0.26 0.4

0 0.1005 0.5560 0.6338 0.2837
0.013 -0.0007 0.5856 0.7521 -0.0150
0.026 -0.1024 0.5259 0.7013 -0.1703
0.04 -0.1145 0.6302 0.7408 -0.2001

the actual contact angular momentum Ly,S shows a constant
error of 0.7 kg·m2/s, as depicted in subplot a. This results in
a forward position drift, as illustrated in subplot b. Still, the
robot maintains stable walking throughout the simulation,
despite the significant unknown load.

3) DRS motion uncertainty: To evaluate the robustness of
the proposed framework under inaccurately known surface
motions, the framework is fed with incorrect DRS motion
under Case A. The tested inaccurate DRS motion x̄s(t) is:

x̄s(t) = (0.04+δA)cos( 2π

0.4 (t +δt)), (46)

where δA and δt are unknown offsets.
Table III summarizes the speed regulation performance

under different levels of DRS motion uncertainty in ampli-
tude δA and phase δt . Note that the maximum values of the
uncertainties are relatively substantial, with δA = 0.04 m,
which is the same as the nominal DRS motion amplitude,
and δt = 0.4 s, which equals one walking-step duration. The
shaded cells contain the actual walking speed corresponding
to different uncertainty levels. In Case A, the desired forward
speed is 0.1 m/s. Without any uncertainties (δA = δt = 0), the
actual forward speed is 0.1005 m/s, demonstrating the close
alignment with the desired value. Although the speed regu-
lation performance degrades as the DRS motion uncertainty
increases, Digit maintains stable walking in all cases.

VII. HARDWARE EXPERIMENT VALIDATION

This section presents the hardware experiment results
that demonstrate the stability, tracking performance, and
robustness of underactuated walking under the proposed
DRS framework. A video of the experiment is available at:
https://youtu.be/NtAT0DFtMCY.

Due to hardware constraints, such as the limited sur-
face area and motion capabilities of the physical DRS,
the locomotion tasks and DRS motions implemented in
the experiments differ from those in the simulation cases.
Still, the framework is tested under different DRS motion
frequencies and directions, and is also evaluated in the
presence of various uncertainties, including sudden pushes
and uncertain surface motions.

A. Experiment Setup

1) DRS motions: A Motek M-Gait treadmill is used as
the DRS (Fig. 12). Due to the movement limits of this
treadmill, the experimentally implemented DRS motions are
less aggressive than those in the simulations. This tread-
mill’s walking area is 1 m×2 m (width×length), and has a
maximum sway amplitude of 5 cm. As the treadmill is not

Fig. 12. The experiment setup includes: 1) Digit robot, 2) Motek M-Gait
treadmill (serving as DRS), equipped with 3) a pitch and sway axis, 4) a
laser safety guard, 5) safety harness, and 6) motion capture cameras.

TABLE IV
EXPERIMENT CASES

Cases DRS expressions (m) L̄y,S (kgm2/s)

A yS(t) = 0.04cos( 2π

6.8 t) 0
B yS(t) = 0.04cos( 2π

5.6 t) 0
C xS(t) = 0.04cos( 2π

6.8 t) 0
D xS(t) = 0.04cos( 2π

5.6 t) 0

capable of moving with a period as short as the robot gait
cycle, which is approximately 0.4 s, we focus on testing DRS
motions with a period multiple times that of the gait. Also,
the treadmill can execute linear motions with a changing
direction only along a single axis, which is the “sway axis”
in Fig. 12. Thus, to generate DRS motions in the frontal (or
sagittal) planes of the Digit robot, the robot is placed to face
perpendicular (or parallel) to the treadmill’s sway axis.

2) Experiment cases: To evaluate the robot performance
under different surface motions, four experiment cases are
considered, as listed in Table IV. In all cases, the desired
contact angular momentum in the sagittal plane, L̄y,S, is set
to zero to enable walking-in-place for ensuring that the robot
moves within the limited walking region of the treadmill.

3) Implementation of the proposed DRS control frame-
work: The proposed DRS framework is implemented on the
Digit robot using C++ within the ROS platform. To inform
the control framework with the robot’s trunk pose and linear
velocity, which are not directly measured by Digit’s onboard
sensors, we utilize Digit’s proprietary state estimator consid-
ering its reasonable accuracy under the tested DRS motions.

For the lower-layer controller, instead of employing input-
output linearizing control as in the simulations, the pro-
posed inverse kinematics control is implemented. To en-
sure a sufficient accuracy in tracking the desired full-body
trajectories φφφ , the control gain κκκ is set as a diagonal
matrix with [10,30,30,5,18,45, 20,0.01,7,10,11×8] as its
diagonal. Here, ⋆⋆⋆m×n denotes an m×n matrix whose ele-
ments all take the value of ⋆. Furthermore, the proportional
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Fig. 13. Experimental trajectory tracking results under two different DRS
motions: a) Case B and b) Case D. In Case B, where the desired robot speed
is zero (stepping in place), the desired ALIP-DRS trajectories for xSC and
Ly,S are set to zero. Digit’s actual trajectories closely match the ALIP-DRS
trajectories, demonstrating stable walking and ALIP-DRS’s accuracy.

gain K̄p in (39) is chosen as a diagonal matrix whose
diagonal values depend on the support foot. This diag-
onal is 100 · [251×2,35,25,51×4,251×2,35,251×3,51×4] and
100 · [251×2,35,251×3,51×4,251×2,35,25,51×4] for the left-
and right-leg-in-support phases, respectively. Similar to the
tuning of κκκ , K̄p is set to achieve accurate tracking. The
derivative gain K̄d is set to zero because Digit’s internal
joint-space impedance controller, which is provided by the
manufacturer, acts as a derivative control term.

The same set of control gains are used across all four cases
to demonstrate the effectiveness of our proposed framework
on hardware without extensive parameter tuning.

B. Experiment Results

This subsection presents the experimental results about
walking stability, trajectory tracking, and robustness.

1) Walking stability and trajectory tracking of unactuated
variables: Figure 13 illustrates the trajectory tracking results
for the CoM position (xSC, ySC) and contact angular momenta
(Lx,S, Ly,S) in Cases B and D, where the DRS sways in the
robot’s lateral and sagittal planes, respectively. As described
in Secs. IV and V, these variables are not directly com-
manded by the lower-layer controller and correspond to the
unactuated state xη . The figure shows that these unactuated
variables remain close to the ALIP-DRS’s solution, which
serves as their desired trajectory as explained in Sec. V.
This confirms that the proposed framework ensures stable
underactuated walking during the various DRS motions in
Cases A-D, and validates the accurate tracking of the actual
unactuated variables.

Fig. 14. Experimental results of phase portraits under Cases A-D, illustrat-
ing the close alignment between the actual Digit motion and the ideal ALIP-
DRS trajectories. This alignment further confirms the reasonable accuracy
of ALIP-DRS and validates that the proposed framework enables reliable
trajectory tracking for the unactuated state xη across various DRS motions.

Fig. 15. Experimental results showing trajectory discrepancies between the
actual robot and the ALIP-DRS model from Cases A to D. The top and
bottom graphs display the combined errors in the CoM positions (xSC , ySC)
and angular momenta (Ly,S, Lx,S), respectively.

Additionally, Fig. 14 shows the sagittal-plane phase por-
trait of both the ideal ALIP-DRS model and the actual
robot under Cases A-D. Note that the ideal ALIP-DRS
phase portrait exhibits multiple loops, as the solution period
Tsys of the ALIP-DRS is several times the walking-step
duration Tstep. The close alignment between the two sets
of phase portraits further demonstrates the walking stability
and indicates the relative accuracy of the ALIP-DRS model.

The trajectory tracking errors of the unactuated variables
under Cases A-D are presented as box-and-whisker plots in
Fig. 15. In each plot, the red central mark represents the
mean value, while the bottom and top edges of the box
correspond to the 25th and 75th percentiles, respectively.
Outliers are indicated by light blue “+” symbols. The mean
values of the CoM position and contact angular momentum
errors are close to zero across all four cases, with relatively
small upper and lower quartiles that show consistent values
across the cases. These relatively small tracking errors align
with the results shown in Figs. 13 and 14, demonstrating the
high tracking accuracy achieved by the proposed framework.

2) Trajectory tracking for directly commanded variables:
The full-body trajectory tracking results for the directed
commanded control variables hc are provided in Fig. 16.
The CoM height zSC shows slight oscillations around the
desired height of 92 cm, with an average tracking error of 1
cm. Note that the desired CoM height trajectory in red is the
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Fig. 16. Experiment results of task-space tracking for the directly com-
manded state xh under Case B. The CoM height zSC closely matches
the desired height, indicating that the actual robot effectively adheres to
the constant CoM height assumption of the ALIP-DRS model. Also, the
relatively small tracking error in the desired swing-foot pose confirms
accurate foot placement, demonstrating faithful execution of the discrete
footstep control designed based on the ALIP-DRS model.

modified desired trajectory. Its value at the beginning of a
walking step is matched with the actual CoM height, which
helps reduce the jumps in the tracking error immediately
after the foot-landing events and thus avoids excessively high
joint torques. The swing-foot position tracking is accurate in
all directions, with a peak tracking error of 5.5 cm and an
average tracking error of 1.2 cm. While the tracking of the
swing-foot orientation is not highly accurate, the average
error in each direction is within 2

◦
, which is sufficient to

ensure a proper foot posture before swing-foot touchdowns.
3) Robustness to pushes and unknown surface motion:

The robustness of the proposed DRS framework is assessed
against three types of external disturbances, which are: (i)
sudden pushes applied by a long stick; (ii) uncertain forward
and lateral DRS motions induced by orienting Digit away
from its nominal facing direction by 45◦; and (iii) unknown
pitching DRS motion with an amplitude of 1◦ and frequency
of 10 s. These uncertainties are tested during a treadmill
sway motion with an amplitude of 0.05 m and a period of 4
s, which is the same as the treadmill motion during which
Digit’s proprietary controller failed to sustain stable walking
as shown in the top row of Fig. 1.

The phase portraits of the lateral CoM position ySC and
contact angular momentum Lx,S under these three types of
uncertainties are given in Fig. 17. Figure 18 shows the
corresponding snapshots of Digit walking, highlighting that
the proposed control framework maintains stable walking
despite the uncertainties. The phase portraits in Fig. 17
indicate that in the presence of the uncertainties, the robot’s
actual trajectories exhibit a larger deviation from the ideal
phase portraits of the ALIP-DRS, compared to the scenarios

Fig. 17. Experiment results of phase portraits under varying uncertainties,
including external pushes (left), unknown forward motion and uncertain
lateral motion of the DRS (middle), and unknown DRS pitch motion (right).

without these uncertainties shown in Fig. 14. This is pri-
marily due to the higher model inaccuracies induced by the
unknown surface motions and external force disturbances.

In particular, under the unknown treadmill rocking mo-
tion, the robot’s actual phase portraits notably deviate from
the ALIP-DRS’s, as shown in Fig. 17. This deviation may be
due to the large modeling errors caused by the unmodeled
vertical ground motions. The relative CoM height above the
support point is assumed to be constant in the ALIP-DRS
model, but a rocking motion can introduce a noticeable
vertical CoM velocity. Moreover, the treadmill’s rocking
motion can introduce non-negligible centroidal momentum
LCoM , which is assumed to be zero in the ALIP-DRS model.
Still, despite the degraded tracking performance compared
to the nominal cases, the robot successfully maintains stable
walking and steps in place near the treadmill’s center under
all tested uncertainties. Potential solutions that address com-
plex surface motions based on the current work are discussed
in the next section.

VIII. DISCUSSION

This sections discusses the capabilities and limitations
of the proposed control approach, along with potential
directions for future research.

To control underactuated bipedal walking on swaying
DRS, this study introduces a new reduced-order robot model,
ALIP-DRS, to approximate the associated hybrid, nonlinear,
time-varying, nonhomogeneous unactuated robot dynamics.
The key novelty of this model lies in its explicit considera-
tion of the DRS sway motion. Due to this sway, the ALIP-
DRS is nonhomogeneous, fundamentally distinguishing it
from classical LIP models and their variations, such as the
time-invariant H-LIP [35] and ALIP [18] and the time-
varying HT-LIP [49] and variable-height LIP [14], which
are all homogeneous. The close alignment between Digit’s
unactuated movement variables and the ALIP-DRS’s trajec-
tories is confirmed through both simulations (Figs. 8, 10,
and 11) and hardware experiments (Figs. 13, 14, 15, and
17), highlighting the reasonable accuracy of the ALIP-DRS.
This model’s generality allows for extensions to other legged
robot platforms beyond humanoids.

In addition, the stability for the nonhomogeneous closed-
loop ALIP-DRS model under a discrete footstep control law
is provably verified based on the stability of its homoge-
neous portion. The previously developed stability conditions

17



Fig. 18. Illustrations of the Digit and DRS motions under different uncertainty tests. Top: Digit steps in place on swaying DRS while experiencing unknown
sudden pushes. Middle: Due to Digit’s heading direction at 45

◦
to the DRS sway direction, it faces uncertain DRS motions in both its sagittal and frontal

planes. Bottom: Digit steps in place experiencing both sway and unknown pitch motions of the DRS. Note that although the treadmill sways left and right
in all experiments, the snapshots in the middle and bottom rows capture moments when the treadmill’s movement points in the same direction.

for existing LIP models, which are homogeneous, are not
directly applicable to the nonhomogeneous ALIP-DRS. The
proposed stability analysis, based on the general stability
theory of linear impulsive nonhomogeneous systems, can be
generalized to continuous-phase control laws for pendulum
models as well as alternative state variable choices beyond
those employed in this study.

The study also introduces a hierarchical control frame-
work that incorporates the ALIP-DRS’s foot-placement con-
troller as its higher-layer footstep planner. By stabilizing the
ALIP-DRS, the discrete control law indirectly stabilizes the
actual unactuated dynamics of the robot during walking. The
stability conditions for the complete full-order system under
the control framework are also provided. Due to their general
applicability, this stability analysis can be extended to prior
hierarchical control methods based on LIP models [18], [35].
Experimental results confirm that the proposed framework
effectively achieves stable underactuated walking under var-
ious DRS sway motions and uncertainties.

Building on these theoretical findings, future work will
extend the stability conditions of the ALIP-DRS model to
accommodate DRS motions in both vertical and horizontal
directions. In the presence of vertical and horizontal sur-
face motions, the hybrid ALIP-DRS model (13) will be
updated with a time-varying matrix Ax, whose explicit time
dependence is induced by vertical surface motion [50]. The
stability conditions for this generalized ALIP-DRS model
will be developed by integrating the stability analysis from

this study with that for locomotion control on vertical surface
motions. This future research will address the observed
deviation between the actual robot state and the ideal
ALIP-DRS model during unknown DRS pitching motions
(Fig. 17). Moreover, future efforts will explore real-time
surface motion estimation using onboard robot sensors, so
as to enable the proposed hierarchical control framework
to adapt more effectively to unknown surface motions and
further enhance locomotion robustness.

IX. CONCLUSION

This paper has introduced a real-time, provably stabi-
lizing control approach that employs a new reduced-order
robot model to enable underactuated bipedal walking on a
swaying dynamic rigid surface (DRS). The classical angular-
momentum-based linear inverted pendulum (ALIP) model
was analytically extended to explicitly consider the time-
varying DRS motion, resulting in a time-varying, nonho-
mogeneous system, which was referred to as the ALIP-
DRS model. A discrete-time footstep control strategy was
constructed, which was proven to be exponentially stabiliz-
ing for the ALIP-DRS model. With the ALIP-DRS footstep
controller serving as a motion planner that generates the de-
sired swing-foot landing positions in real-time, a hierarchical
control framework was developed for the full-order robot
model of an underactuated walking robot. The closed-loop
stability conditions for the hybrid full-order control system
were constructed by analyzing both the unactuated and fully
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actuated subsystems under the proposed control framework.
Both numerical simulations and hardware experiments on a
Digit humanoid robot confirmed that the proposed ALIP-
DRS model is reasonably accurate in describing the unac-
tuated dynamics of the actual robot. Further, the proposed
framework achieved stable walking under various DRS sway
motions, and demonstrated high robustness under different
uncertainties including sudden pushes and uncertain DRS
motions in different directions.

ACKNOWLEDGMENT

The authors would like to thank I-Chia Chang for sup-
porting the hardware experiments and providing constructive
comments on this paper.

REFERENCES

[1] J.-Y. Kim, I.-W. Park, and J.-H. Oh, “Walking control algorithm of
biped humanoid robot on uneven and inclined floor,” J. Intel. Rob.
Syst., vol. 48, pp. 457–484, 2007.

[2] S. Caron, A. Kheddar, and O. Tempier, “Stair climbing stabilization
of the hrp-4 humanoid robot using whole-body admittance control,”
in Proc. IEEE Int. Conf. Rob. Autom., pp. 277–283, 2019.

[3] A. Pajon, S. Caron, G. De Magistri, S. Miossec, and A. Kheddar,
“Walking on gravel with soft soles using linear inverted pendulum
tracking and reaction force distribution,” in Proc. IEEE-RAS Int. Conf.
Humanoid Rob., pp. 432–437, 2017.

[4] C. E. Bauby and A. D. Kuo, “Active control of lateral balance in
human walking,” J. Biomech., vol. 33, no. 11, pp. 1433–1440, 2000.

[5] D. Kim, J. Lee, J. Ahn, O. Campbell, H. Hwang, and L. Sentis,
“Computationally-robust and efficient prioritized whole-body con-
troller with contact constraints,” in Proc. IEEE Int. Conf. Intel. Rob.
Syst., pp. 1–8, 2018.
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