
FROST*: Fast Robot Optimization and Simulation Toolkit

Ayonga Hereid1 and Aaron D. Ames2

Abstract— This paper presents FROST, an open-source MAT-
LAB toolkit for modeling, trajectory optimization and sim-
ulation of hybrid dynamical systems with a particular focus
in dynamic locomotion. The design objective of FROST is to
provide a unified software environment for developing model-
based control and motion planning algorithms for robotic
systems whose dynamics is hybrid in nature. In particular,
FROST uses directed graphs to describe the underlying dis-
crete structure of hybrid system models, which renders it
capable of representing a wide variety of robotic systems.
Equipped with a custom symbolic math toolbox in MATLAB
using Wolfram Mathematica, one can rapidly prototype the
mathematical model of robot kinematics and dynamics and
generate optimized code of symbolic expressions to boost the
speed of optimization and simulation in FROST. In favor of
agile and dynamic behaviors, we utilize virtual constraint based
motion planning and feedback controllers for robotic systems to
exploit the full-order dynamics of the model. Moreover, FROST
provides a fast and tractable framework for planning optimal
trajectories of hybrid dynamical systems using advanced direct
collocation algorithms. FROST has been successfully used to
synthesize dynamic walking in multiple bipedal robots. Case
studies of such applications are considered in this paper,
wherein different types of walking gaits are generated for two
specific humanoid robots and validated in simulation.

I. INTRODUCTION

The rapid advancement of mechanical and actuation capa-
bilities of modern robots has made increasingly more agile
and robust locomotion on robots possible. To exploit the
full dynamic capabilities of the machine, it is necessary for
researchers to develop systematic approaches that consider
the mathematical model of the robot when planning and
controlling dynamic behaviors of a robot. In this paper, we
introduce FROST—an open-source MATLAB toolkit aiming
to provide an integrated software environment for developing
model-based control and planning algorithms for robotic
systems, specifically for dynamic legged locomotion, even
for multi-contact foot behaviors and different actuation types.

In many applications of legged robots, heuristic-based
simplified model techniques are still the most popular ap-
proaches due to their simplicity and maturity [16], [22].
While these simple models may provide intuitive understand-
ings of a certain aspects of the system and often have many
implementation advantages, they also limit the flexibility of
the mechanical systems and often result in rather artificial

* The online documentation and source code of FROST can be found:
http://ayonga.github.io/frost-dev/

1Ayonga Hereid is a postdoctoral research fellow of Electrical En-
gineering and Computer Science, University of Michigan, Ann Arbor, MI
48105, USA ayonga@umich.edu

2Aaron D. Ames is with the Faculty of Mechanical and Civil Engi-
neering, Control and Dynamical Systems, California Institute of Technology,
Pasadena, CA 91125, USA ames@cds.caltech.edu

(a) ATLAS (b) DRC-HUBO

Fig. 1: The ATLAS and DRC-HUBO robots for which
the FROST framework is applied in this work to generate
walking motions.

behaviors. The development of more advanced optimization
techniques in recent years has led to an increasing trend in
the development of optimization based whole body planning
algorithms which utilize more complicated dynamic models.
[7], [8], [13], [17]. These applications typically use general-
purpose nonlinear programming solvers, e.g., IPOPT [25]
or SNOPT [9], to formulate the motion planning prob-
lems, which often requires experts’ knowledge of trajec-
tory optimization methods. Moreover, one may use state-
of-the-art optimal control toolboxes, such as GPOPS [20],
DIRCOL [24] or PSOPT [5], that come with advanced
trajectory optimization algorithms. But, they either lack an
effective framework for users to construct the robot model
or are not capable of solving large-scale problems that are
very common for high-dimensional robotic systems. Hence,
our objective is to develop an integrated tool for modeling,
optimization and simulation of robotics systems.

The mathematical foundation of FROST is the hybrid
dynamical system and virtual constraints [26] that were
designed to mathematically synthesize stable controllers for
realizing dynamical behaviors, such as bipedal locomotion.
By enforcing virtual constraints that are invariant through
impact via feedback controllers, the stability properties of
the high-dimensional system are effectively captured in a
lower-dimensional representation, termed the hybrid zero
dynamics. If one can find such set of virtual constraints,
then there exists a class of feedback controllers [4], [26]
that can be used to stabilize the full-order robot dynamics.
Therefore, optimal motion generation via virtual constraints

http://ayonga.github.io/frost-dev/

MEX
binaries

Hybrid Dynamics System Model Wolfram Mathematica
Kernel

NLP Solvers
e.g. ipopt, fmincon, etc.

System
Simulation

Trajectory
Optimization

Physical
Constraints

System
Configuration

Behavior
Configuration

Visualization

Matlab Core Framework BackendsUser

Continuous
Dynamics

S
ym

b
o
l ic T

o
o
l b

o
x

Discrete
Dynamics

Fig. 2: The block diagram illustration of the FROST architecture.

unifies the motion planning and the stabilizing controller
synthesis problem. In FROST, the motion planning problem
becomes a nonlinear constrained optimization problem that
determines an appropriate set of virtual constraints.

The FROST architecture is depicted in Figure 2. It consists
of two main components: the core framework implemented
in MATLAB and the back-end engines, including the Math-
ematica symbolic engine and the NLP solver. FROST pro-
vides a unified framework that is centered around a hybrid
dynamical system model. FROST also utilizes the Mathe-
matica kernel to compute the symbolic expressions for robot
kinematics and dynamics to boost the computational speed of
the optimization and simulation. More importantly, FROST
automatically constructs a (hybrid) trajectory optimization
problem for a (hybrid) dynamical system using advanced
direct collocation methods. The objective of this paper is
to introduce the key elements of FROST and illustrate it
on a collection of case studies; in particular, generating 3D
walking gaits for ATLAS [21] and DRC-HUBO [14] (shown
in Figure 1).

The structure of this paper is as follows. Section II intro-
duces the mathematical modeling of general hybrid dynami-
cal systems, as well as rigid body kinematics and dynamics
of robotics, Section III presents the virtual constraint based
control design and the simulation of hybrid dynamical sys-
tems, and Section IV briefly discusses the hybrid trajectory
optimization using direct collocation. Lastly, we present two
specific applications of FROST for 3D humanoid locomotion
in Section V followed by the discussion and conclusion in
Section VI.

II. MODELING OF HYBRID DYNAMICAL SYSTEM

FROST provides an abstract framework to formally con-
struct hybrid dynamical system models. In this section, we
discuss this feature in the context of robotic systems.

A. Hybrid System and Directed Graph

Hybrid systems are systems that exhibit both continuous
and discrete dynamics, and thus have a wide range of applica-
tions to various types of physical systems undergoing impacts
[11]. For instance, legged locomotion often consists of a col-
lection of continuous phases, with discrete events triggering
transitions between neighboring phases [10]. Specifically, we
use the following definition to model a hybrid system in
FROST.

Definition 1. A hybrid system is a tuple,

H C = (Γ,D,U , S,∆,FG), (1)

where Γ = {V,E} is a directed graph, D is the admissible
configuration of the continuous domains, U represents the
admissible controllers, S determines guard conditions that
trigger discrete transitions, and ∆ and FG represent the
discrete and continuous dynamics respectively [3].

In FROST, the discrete structure of a hybrid system is
represented via a directed graph. The graph may be either
cyclic or acyclic or a combination of both based on the
definition of the behavior that the graph describes, see
Figure 3. A directed graph consists of two elements: a set
of vertices V that represent the continuous phases of a
dynamical system and a set of edges E that represent the
discrete events of the behavior. FROST allows dynamically
adding or removing vertices and edges for the purpose of
flexibility. When using a directed graph to model the ordering
structure of a locomotion behavior, each vertex represents a
admissible continuous phase (a.k.a. domain) determined by
the Lagrangian model of the mechanical system and physical
constraints of the robot (e.g., contacts); each edge represents
a possible discrete transition between two continuous phases
occuring at a change in the physical constraints, e.g., es-
tablishing new contacts or breaking existing contacts. For
instance, Figure 3a could represent periodic locomotion and

Figure 3b represents a non-periodic gait, whereas Figure 3c
may model the entire behavior of robot moving from the rest
position to a periodic motion and ultimately to stopping.

(a) (b) (c)

Fig. 3: Illustration of different types of directed graphs. (a)
a simple directed cycle; (b) a acyclic graph; (c) a general
directed graph that contains cyclic and acyclic sub-graphs.

B. Continuous and Discrete Dynamics

Continuous Dynamics. The continuous state dynamics de-
scribe the evolution of system states governed by differential
equations on a smooth manifold determined via a set of
algebraic constraints. Let x ∈ D be a set of coordinates of
the system, with D ⊆ X being a smooth embedded manifold
in the configuration space X , the continuous dynamics equa-
tions can be given the following form of ordinary differential
equations (ODEs):

First-order ODEs: M(x)ẋ = F (x) +G(x, u) (2)
Second-order ODEs: M(x)ẍ = F (x, ẋ) +G(x, u) (3)

where M(x) is the positive definite mass matrix, F (x) or
F (x, ẋ) is a set of drift vectors, and G(x, u) is a set of
input vectors with u being the system input variables. Input
variables could be either control inputs of the actuators or
other external inputs induced from the physical constraints
of the system. FROST uses the ContinuousDynamics
class to represent continuous state dynamical systems, al-
lowing users to construct a system object by configuring the
symbolic representation of states and inputs variables and
mathematical expressions of each element of system ODEs.
One specific example of such systems is a robot model
consisting of rigid bodies—e.g., a biped—whose dynamics is
governed by the Euler-Lagrangian equations of motion [19],
in which the inertia matrix corresponds to the mass matrix,
and the Coriolis matrix and gravity vectors correspond to the
drift vectors.
Holonomic Constraints. In addition to the differential equa-
tions, the continuous dynamics is often constrained by a set
of algebraic equations, resulting in a constrained dynam-
ical system. These constraints could be either holonomic
or nonholonomic, however, FROST currently only supports
holonomic constraints given as hc(x) ≡ constant. To impose
holonomic constraints on a dynamical system, we enforce the
second order derivatives of hc(x) must be zero, i.e.,

Jc(x)ẍ+ J̇c(x, ẋ)ẋ = 0. (4)

where Jc(x) = ∂hc(x)
∂x is the Jacobian of the holonomic

constraints. For each holonomic constraint, there exists a
constraint wrench λc acting on the system with the associated

input vector of this wrench being: JT
c (x)λc. Because the con-

straint wrenches are the external inputs used to enforce the
holonomic constraints, their magnitude will be determined
from (4). FROST uses the HolonomicConstraint class
to model holonomic constraints. Users can add or remove
particular holonomic constraints objects to the system. The
associated input vectors and constraint wrenches will be
automatically configured during these process. For robotic
systems, holonomic constraints may be used to model many
physical constraints of the system. For instance, a fixed joint
or a physically connected linkages such as a four-bar linkage
can be expressed as a holonomic constraint.

Unilateral Constraints. We also use holonomic constraints
to model rigid contacts of the robot with the environment.
That is, the following complementarity conditions should
hold: either body cannot exert a force when there is no
contact and the bodies that constitute a contact cannot
interpenetrate each other [15]. While a holonomic constraint
describes how a contact effects the dynamics of the system,
it ignores limitations of the complementarity conditions.
For instance, the wrenches from the ground-foot contacts
of a legged robot must be within the spatial friction cone
and satisfy the zero moment point criteria, and the normal
force must be positive. The distance between two bodies
cannot be negative. To accommodate these limitations, the
UnilateralConstraint class is introduced as an in-
equality condition of state or input variables. Unlike holo-
nomic constraints, unilateral constraints are not strictly en-
forced in the system simulation, but are instead considered as
necessary conditions for the control law design and trajectory
optimization. Some unilateral conditions are also used as
event functions to determine the triggering conditions for
discrete events of the hybrid system model1.

Discrete Dynamics. When the evolution of a system tran-
sitions from one continuous phasae into another, its states
often undergo an instantaneous change. In FROST, we use
the DiscreteDynamics class to characterize these instan-
taneous changes in state variables. A DiscreteDynamics
object determines the followings: 1) the event condition that
triggers the change, and 2) a reset map that represents the
mathematical formulation of the change, which can be given
expressed in the following manner:

x+ = ∆x(x−), (5)

where x− = limt↗t0 x(t) and x+ = limt↘t0 x(t) with t0 be
the time instant at which the discrete dynamics occurs. For
a second-order system, the first order derivative of x should
also be considered, i.e.,

ẋ+ = ∆ẋ(x−)ẋ−, (6)

where ẋ− = limt↗t0 ẋ(t) and x+ = limt↘t0 ẋ(t). For
the sake of generalization, we consider a transition with no

1Ideally, all unilateral constraints are event functions. For simplicity,
however, FROST simulation only monitors event functions that have asso-
ciated edges predefined in the hybrid system model.

(a) Kinematic tree (b) Coordinate frame

Fig. 4: Illustration of a robot kinematic tree structure and
coordinate frame.

instantaneous change of states as a discrete dynamics model
with ∆ = I being an identity matrix.

C. Rigid Body Kinematics and Dynamics

With the goal of providing an user-friendly environment
dedicated to the development of dynamic locomotion of
legged robots, FROST features a rich set of functions and
classes to model robotic systems in the context of hybrid
dynamical systems.
Robot Kinematics. We use the Universal Robot Description
Format (URDF) as a standard to specify the rigid body
tree structure of a robot, see Figure 4a. Currently, FROST
only supports the core components (e.g., joints, links, and
transmissions) of URDF description of a robot. Moreover,
the following group of classes are provided by FROST to
construct the kinematic model from the robot’s URDF file:
• CoordinateFrame defines an arbitrary coordinate

frame in the SO(3) space, as shown in Figure 4b. Each
coordinate frame has a reference frame, and its config-
uration is determined by the offset from the origin of
the reference and the rotation expressed in the reference
frame. If the reference frame is empty, then it is assumed
to be the world frame.

• RigidJoint defines a coordinate frame located at
the origin of a joint and rigidly attached to its child
link, with the previous joint in the kinematic tree as its
reference. It also defines the joint type, rotation axis,
child and parent link, limits of the joint, and actuator
properties described in the URDF file.

• RigidBody defines a coordinate frame rigidly at-
tached to a link and located at its center of mass, with
its parent joint frame as its reference. It also defines the
mass and inertia properties of the rigid link.

• ContactFrame defines a coordinate frame located at
the contact point of the robot with the environment. It
also defines the type of kinematic contacts, determines
whether the contact is point, line, or planar contact. In
particular, we always assume that the z−axis of the
contact frame is normal to the contact surface.

Given a URDF file of a robot, FROST automatically
parses its contents to construct coordinate frame objects
for the joints and links. The joint and link objects are

then used to construct an object of RobotLinks class
inherited from the ContinuousDynamics. That is being
said, this class represents a particular type of continuous
dynamical system—rigid body dynamical system. Contacts
can be added or removed after an object of such class is cre-
ated. RobotLinks also provides methods for conveniently
computing mathematical expression the forward kinematics
and the spatial/body Jacobians etc. of a coordinate frame.
Robot Dynamics. Once the RobotLinks object is cre-
ated, the mathematical expression of the Euler-Lagrangian
equations of motion will be automatically computed sym-
bolically using a custom Mathematica package based on the
screw theory described in [19]. The dynamical equations are
automatically then formulated as the ODEs in (3).
Rigid Impact. A rigid impact is a special type of discrete
dynamics describing the impulsive contact between two
rigid bodies, such as the robot feet striking the ground.
Following the hypotheses in [15] and [10], we assume that
the impact occurs instantaneously, and that the two impacted
bodies stick to each other post-impact. Therefore, the robot
configuration remains the same but the joint velocities will
have impulsive changes. The reset map can be computed
from the impact constraints. For more details, we refer the
readers to [10].

III. CONTROL DESIGN AND SIMULATION

The most distinctive feature of FROST is its use of virtual
constraint based feedback control. In this section, we briefly
introduce the default control design and the simulation of
hybrid system in FROST.

A. Virtual Constraint based Feedback Controller

Analogous to holonomic constraints, virtual constraints are
defined as functions of state variables that modulate the robot
links in order to achieve a certain desired behavior, e.g., a
walking gait, via feedback controllers [26]. In general, a
virtual constraint is defined as the difference between the
actual output ya(x) and the desired output yd(α, τ):

y(x, α) := ya(x)− yd(α, τ) (7)

where α is a set of parameters describing the virtual con-
straint, with τ a monotonically increasing or decreasing
timing variable. FROST provides very flexible ways of
defining virtual constraints. The default form used for desired
outputs is the Bézier polynomial. Users have the freedom to
choose the order of the polynomial or even use other function
forms, such as canonical fuman walking function (CWF)
used [3]. The phase variable τ can be either a time or state-
based function. Users are also allowed to define the relative
degree of the output. Due to the space limitations, we refer
the readers to the online documentation of FROST for more
details regarding the configuration of virtual constraints.

Given a virtual constraint y for a dynamical system, one
can use classical feedback linearization control to drive y →
0 [26]. Such controller has the following form:

u = −A−1(Lf + µ), (8)

where A is a decoupling matrix, Lf represents the nonlinear
dynamics of the system, and µ is the auxiliary input. If we
assume that the virtual constraint has relative degree 2, then
under this control we have:

ÿ = −µ. (9)

One can choose the µ such that the linear dynamics in (9)
is stable. In addition, advanced optimal controllers based on
control Lyapunov functions (CLFs) and quadratic program-
ming can be applied to stabilize the outputs [4]. As a result
of the virtual constraint based methodology used by FROST,
the end result is that the FROST automatically generates
controllers to achieve dynamic motions either via feedback
linearization or CLFs.

Remark 1. The idea of virtual constraints is based on the
method of computed torques [26], the total number of outputs
should not exceed the total degrees of actuation and total
unconstrained degrees of freedom, whichever is smaller. If
the number of outputs is more than the total unconstrained
degrees of freedom—which is the total degrees of freedom
minus the number of holonomic constraints—the system
becomes an over-constrained system. Such over-constrained
systems should be avoided in the control law design.

Algorithm 1 Hybrid Dynamics Simulation
parse:

simulation options
initialize:

x(0)← x0
vertex← the starting vertex

while true do
if vertex is empty or terminal then

break
end if
if Ncycle ≥ max(cycle) then

break
end if
do

forward simulate the continuous phase
while guard conditions not triggered
update:

edge← the triggered guard
vertex← tar(edge)

discrete dynamics: x(t+)← ∆ex(t−)
end while

B. Hybrid System Simulation

Once a hybrid system model of a specific behavior and the
virtual constraints based feedback controller are constructed,
FROST can simulate and validate the hybrid dynamical
system. The simulated subject could be the entire directed
graph of the system or a certain part of the graph — a sub-
graph. The simulation of the sub-graph can be specified via
the simulation option, in which a sub-graph can be either
directly defined or constructed by specifying the starting

Fig. 5: Defect constraints for Hermite-Simpson collocation.

and terminal vertices within the original graph. FROST
also allows for one to specify the number of cycles if the
simulated hybrid system model is a simple cyclic graph.

A simplified procedure for hybrid dynamics simulation is
shown in Algorithm 1. The simulator starts with a certain ver-
tex in the graph, and then iterates through the graph until it
reaches a terminal vertex which has no successor or it reaches
the specified number of cycles. The simulated trajectory of
the hybrid dynamical system then can be visualized by 3D
animators via RViz or a custom stick animator provided by
FROST. The default 3D animator of FROST currently does
not support parsing the mesh files defined in URDF files.

IV. HYBRID TRAJECTORY OPTIMIZATION

The main functionality of FROST is the fast and scalable
trajectory optimization algorithm for hybrid dynamical sys-
tems. When virtual constraints are used to represent a certain
behavior or a gait, the optimization not only generates an
optimal trajectory, it also optimizes a set of virtual constraint
parameters, and hence feedback controllers.

A. Direct Collocation Optimization

Given a hybrid dynamical system model, FROST automat-
ically constructs a multi-phase hybrid trajectory optimization
nonlinear programming (NLP) problem. Each phase itself is
a single trajectory optimization problem representing either
continuous or discrete dynamics1.In particular, direct collo-
cation methods are used to solve the continuous dynamics
trajectory optimization problem [6]. FROST supports various
types of direct collocation methods. Here we briefly intro-
duce the default Hermite-Simpson collocation.

First, we uniformly discretize the continuous phases into
N ≥ 0 grids, then the even-numbered discrete nodes at the
terminals of each grid are called cardinal nodes and the
odd-numbered nodes at the middle of each grid are called
interior nodes (see Figure 5). The state (including first and
second order derivatives, if appropriate) and input variables
of the continuous dynamics at these discrete nodes will be
automatically introduced as optimization variables. If the
defects δ and ζ at all interior nodes become zero and the
discrete state and input variables satisfy system dynamics
at all nodes, then there exist a piecewise continuous cubic
polynomials determined by the discrete state variables ac-
curately approximating the solution of differential equations

1Phases representing discrete dynamics have a time horizon of zero.

Fig. 6: Illustration of sparse Jacobian matrix construction.

of the system [1]. Then the hybrid trajectory optimization
problem that has Np phases becomes a constrained nonlinear
programming problem:

argmin

Np∑
i=1

∫ tif

ti0

Li(·)dt+ Ei(·) (10)

subject to defect constraints, system dynamics and other
physical constraints, where Li(·) and Ei(·) are the running
and terminal cost of each phase, respectively. FROST will
automatically enforce the holonomic constraints, unilateral
constraints and virtual constraints defined on a continuous
phase as physical constraints of the optimization problem.
For the detailed mathematical formulation of the problem,
we refer the readers to [1].

Different from other direct collocation trajectory opti-
mization toolboxes, FROST introduces defect variables, also
called slack variables, to avoid computing the closed form
system dynamics explicitly. Instead, we enforce the system
dynamics in its raw form of differential algebraic equations
(a combination of (3), (4), and (9)) directly. The idea of
defect variables is very simple. Assume that the original
constraint has a form: a(b(x)) = 0. This can be decoupled
by introducing a defect variable y and re-formulate the
constraint as:

a(b(x)) = 0 ⇐⇒ b(x) = y, a(y) = 0 (11)

The introduction of the defect variables not only improves
the local linearity of the constraints, but also makes it
possible to compute the first and second order derivatives
of the nonlinear constraints symbolically. FROST provides a
custom symbolic math toolbox that uses Mathematica kernel
as backend. Using this toolbox, we can compute the analytic
gradients of a given nonlinear function and export them as
executable MEX binaries for the solver to use.

B. Interface to NLP Solvers

Once the hybrid trajectory optimization NLP problem is
formulated, it can be solved by state-of-the-art NLP solvers,
such as IPOPT [25], SNOPT [9], or Fmincon, etc. In FROST,
we design solver interface classes that transform the original
NLP problem to a specific format compatible with the
solver. With these interfaces, the same NLP problem can be

Dhs

Dtl

Dts

Heel Strike
Toe Lift

Toe Strike

Fig. 7: The directed graph of the multi-contact periodic
walking for ATLAS.

seamlessly solved by different NLP solvers without changing
the original problem. In particular, the interface first stacks all
NLP variables, constraints and cost functions into 1-D arrays.
During this process, variables, constraints and cost functions
will be indexed based on their location in the corresponding
array. To further expedite the run-time evaluation, we exploit
the sparsity pattern of the Jacobian matrix. Thanks to the
symbolic calculation of analytic Jacobians, we can determine
the indices of all the non-zero entries of the Jacobians even
before running the optimization. By only computing the
value of these non-zero entries at runtime, one can easily
construct a sparse Jacobian matrix using the pre-computed
index information, as shown in Figure 6. Considering that
the sparsity of the Jacobian matrix is often less than 1%,
this process saves a significant amount of computation time.

V. CASE STUDIES

In this section, we demonstrate the application of FROST
for dynamic legged locomotion through two 3D humanoids.

A. ATLAS: Multi-Contact Periodic Walking

Modeling. In this example, we consider the lower-body
ATLAS robot model described in [17], which has 6 degrees
of freedom in each leg and 3 degrees of freedom in its upper
body. The upper body joints are considered as fixed, which
will be enforced as holonomic constraints. We consider a
periodic walking gait with 3 different contact configurations,
resulting in a multi-domain hybrid system model with a
directed cycle Γ = {V,E} as shown in Figure 7, given as

V = {ts, tl,hs}, (12)
E = {ts→ tl, tl→ hs,hs→ ts}. (13)

The contact configuration of each domain is defined as
follows (assuming all contacts have friction):
• Dts has a planar contact at the stance foot and a line

contact at the non-stance toe;
• Dtl has a planar contact at the stance foot;
• Dhs has a line contact at the stance toe and a line contact

at the non-stance heel.
In addition, we define the linearized forward velocity

of the robot as our velocity-modulating output, and corre-
spondingly, choose the linearized forward hip position as the

Fig. 8: Tiled still images from the simulation of Atlas multi-
contact walking in 3D at 0.51m/s.

phase variable [3]. The detailed selection of these position-
modulating outputs is omitted in this paper due to space
limitations, and refer readers to [1].
Gait Optimization. Given this hybrid system model object,
FROST automatically formulates a hybrid trajectory opti-
mization problem. The limits on joint torques, velocities,
and position, and the unilateral conditions on the contact
wrenches will be automatically enforced via FROST. In
particular, we choose the cost function to be the mechanical
cost of transport of the walking gait, which is given as the
total mechanical work done by the actuators divided by the
weight of the robot and the distance traveled during one step.
Additional physical constraints, such as swing foot clearance,
avoidance collision, etc., will be also considered in the gait
optimization problem.

In this example, we use IPOPT to solve the NLP problem,
the solver converged to a feasible solution after with an
average of 988 seconds and 744 iterations when using a
randomly generated initial guess. These numbers are reduced
to 269 seconds and total of 246 iterations when seeded with
relatively “good” initial guesses taken from the previous re-
sults. The convergence speed of FROST gait optimization is
notably faster than another full-body dynamics open loop gait
optimization algorithm—DIRCON—implemented in Drake,
which requires about 10 minutes to two hours to con-
verge for the same ATLAS application [21] using SNOPT.
While the choice of different solvers could potentially affect
the convergence time, the result shows FROST is able to
provide the same or even marginally better performance
than DIRCON, the state-of-the-art full-body dynamics gait
generation framework, in this particular case.
Simulation. We also show the simulation result of one
optimal walking gait in Figure 8. The step length of this
gait is 0.48 m, the time duration of a complete step is
0.94 seconds and the mechanical cost of transport (COT) is
0.201. Because in the simulation we use the same feedback
controllers as used in the optimization via the linear output
dynamics constraints [1], there is no increase of the COT
numbers in simulation. When using QP-based CLF feedback
controllers in the simulation [4], we noticed a slight reduction
in the COT number, yielding 0.19. Compared to the result
in [21], the gait discussed in this work has slower walking
speed but marginally smaller cost of transport number. More
importantly, the COT number does not increase in simula-
tion as it happens with DIRCON which constructs a LQR
type feedback controller to stabilize the open-loop optimal
trajectory [21].

Fig. 9: The directed graph description of DRC-HUBO walk-
ing from the rest to a periodic gait.

Fig. 10: Walking tiles of DRC-HUBO simulation.

B. DRC-HUBO: Dynamic Arm Swing

In this example, we consider the 3D full humanoid, DRC-
HUBO, a fully-actuated humanoid with 27 actuators [14].
The kinematic model includes the upper body arm links,
which are allowed to move while the robot is walking. In
many gait planning algorithms, the arm motion is often
ignored, which can be a missed opportunity. Beyond the ob-
vious manipulation tasks, arms can be helpful for improving
the balance and economy of locomotion by swinging them
as part of a dynamic gait. As such, we use FROST to fully
exploit the internal dynamics of the robot. Importantly, the
humanoid swings its arms as a consequence of optimizing
the dynamic gait for energy-efficient locomotion subject to
no-net-moment constraints, not by a priori specification.

In particular, we generated a walking motion in FROST
that starts from a rest position to a single-domain periodic
gait. An acyclic hybrid system model was constructed to
model such behavior, as shown in Figure 9. More liberal
constraints on arm-joint velocities and effective foot size
as well as slower stepping frequencies are allowed during
the gait optimization process. As shown in Figure 10, this
gait exhibits very natural-looking counter-rotating arm swing
motion to minimize the total mechanical energy consumed.
Typically such optimization uses 7-10 minutes on a laptop
computer when using IPOPT with linear solver ma57 [25]).

To validate the stability of the gait, we simulated the
DRC-HUBO walking in DART simulation environment1,
which uses LCP-based contact models to perform more “real-
world” simulation. An animation of DART simulation result
is also shown in the bottom figure of Figure 10, The center
of mass position evolution over time in both FROST and

1The DART simulation environment is available at
https://github.com/dartsim/dart.

Fig. 11: Center-of-mass position over time for the simulated
gait in FROST and DART.

DART simulation is shown in Figure 11, which shows a good
consistency between these two simulation environments.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced FROST, an integrated soft-
ware package for synthesizing highly dynamic legged loco-
motion within the HZD framework. The use of directed graph
descriptions for hybrid system modeling allows FROST
to model a wide range of dynamic behaviors on a given
robot. By transforming the virtual constraint optimization
into a large-scale hybrid trajectory optimization problem,
FROST is able to generate versatile behaviors for various
high-dimensional humanoid robots [1], [2], [12], [18], [23].
Further, FROST provides a unified and generalized software
package for users who are less familiar with the HZD frame-
work to design model-based gaits and stabilizing controllers
for their robots. Future work involves faster optimization
algorithms and advanced feedback controllers that allow
versatile behaviors of robotic systems.

ACKNOWLEDGMENT

The authors would like to thank the members of Dr. Jessy
Grizzle’s research group at the University of Michigan for
their feedback and discussion on dynamic gait optimization.

REFERENCES

[1] Yongga A. Dynamic Humanoid Locomotion: Hybrid Zero Dynamics
Based Gait Optimization via Direct Collocation Methods. PhD thesis,
Georgia Institute of Technology, 2016.

[2] A. Agrawal, O. Harib, A. Hereid, S. Finet, M. Masselin, L. Praly,
A. D. Ames, K. Sreenath, and J. W. Grizzle. First steps towards
translating HZD control of bipedal robots to decentralized control of
exoskeletons. IEEE Access, 5:9919–9934, 2017.

[3] A. D. Ames. Human-inspired control of bipedal walking robots. IEEE
Transactions on Automatic Control, 59(5):1115–1130, May 2014.

[4] A. D. Ames, K. Galloway, K. Sreenath, and J. W. Grizzle. Rapidly
exponentially stabilizing control lyapunov functions and hybrid zero
dynamics. IEEE Transactions on Automatic Control (TAC), 59(4):876–
891, April 2014.

[5] Victor M Becerra. Solving complex optimal control problems at
no cost with PSOPT. In Computer-Aided Control System Design
(CACSD), 2010 IEEE International Symposium on, pages 1391–1396.
IEEE, 2010.

[6] John T Betts. Practical methods for optimal control and estimation
using nonlinear programming, volume 19. Siam, 2010.

[7] Justin Carpentier, Steve Tonneau, Maximilien Naveau, Olivier Stasse,
and Nicolas Mansard. A versatile and efficient pattern generator for
generalized legged locomotion. In IEEE International Conference on
Robotics and Automation (ICRA), Stockholm, Sweden, May 2016.

[8] Hongkai Dai, Andrés Valenzuela, and Russ Tedrake. Whole-body
motion planning with centroidal dynamics and full kinematics. In
2014 14th IEEE-RAS International Conference on Humanoid Robots
(Humanoids), pages 295–302. IEEE, 2014.

[9] Philip E. Gill, Walter Murray, and Michael A. Saunders. SNOPT: An
SQP algorithm for large-scale constrained optimization. SIAM Review,
47(1):99–131, 2005.

[10] J. W. Grizzle, C. Chevallereau, R. W. Sinnet, and A. D. Ames. Models,
feedback control, and open problems of 3D bipedal robotic walking.
Automatica, 50(8):1955 – 1988, 2014.

[11] J. Guckenheimer and S. Johnson. Planar hybrid systems. In Hybrid
Systems II, volume 999 of Lecture Notes in Computer Science, pages
202–225. Springer Berlin Heidelberg, 1995.

[12] Ayonga Hereid, Shishir Kolathaya, and Aaron D Ames. Online hybrid
zero dynamics optimal gait generation using Legendre pseudospectral
optimization. In IEEE Conference on Decision and Control (CDC).
IEEE, 2016.

[13] Alexander Herzog, Nicholas Rotella, Stefan Schaal, and Ludovic
Righetti. Trajectory generation for multi-contact momentum control.
In Humanoid Robots (Humanoids), 2015 IEEE-RAS 15th International
Conference on, pages 874–880. IEEE, 2015.

[14] Christian Hubicki, Ayonga Hereid, Michael Grey, Andrea Thomaz, and
Aaron Ames. Work those arms: Toward dynamic and stable humanoid
walking that optimizes full-body motion. In IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2016.

[15] Y. Hurmuzlu, F. Génot, and B. Brogliato. Modeling, stability and con-
trol of biped robots–a general framework. Automatica, 40(10):1647–
1664, 2004.

[16] S Kajita, F Kanehiro, K Kaneko, K Yokoi, and H Hirukawa. The 3D
linear inverted pendulum model: a simple modeling for a biped walk-
ing pattern generation. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 239–246, 2001.

[17] Scott Kuindersma, Robin Deits, Maurice Fallon, Andrés Valenzuela,
Hongkai Dai, Frank Permenter, Twan Koolen, Pat Marion, and
Russ Tedrake. Optimization-based locomotion planning, estimation,
and control design for the Atlas humanoid robot. Auton. Robots,
40(3):429–455, March 2016.

[18] Wen-long Ma, Ayonga Hereid, Christian M. Hubicki, and Aaron. D.
Ames. Efficient HZD gait generation for three-dimensional underac-
tuated humanoid running. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE/RSJ, 2016.

[19] R. M. Murray, Z. Li, S. S. Sastry, and S. S. Sastry. A mathematical
introduction to robotic manipulation. CRC press, 1994.

[20] Michael Patterson and Anil Rao. GPOPS-II: A MATLAB software
for solving multiple-phase optimal control problems using hp-adaptive
gaussian quadrature collocation methods and sparse nonlinear pro-
gramming. ACM Transactions on Mathematical Software (TOMS),
41(1):1, 2014.

[21] M. Posa, S. Kuindersma, and R. Tedrake. Optimization and stabiliza-
tion of trajectories for constrained dynamical systems. In 2016 IEEE
International Conference on Robotics and Automation (ICRA), pages
1366–1373, May 2016.

[22] J. Pratt, T. Koolen, T. de Boer, J. Rebula, S. Cotton, J. Carff,
M. Johnson, and P. Neuhaus. Capturability-based analysis and control
of legged locomotion, part 2: Application to m2v2, a lower-body hu-
manoid. The International Journal of Robotics Research, 31(10):1117–
1133, August 2012.

[23] Jacob Reher, Ayonga Hereid, Shishir Kolathaya, Christian M. Hubicki,
and Aaron D. Ames. Algorithmic foundations of realizing multi-
contact locomotion on the humanoid robot DURUS. In the 12th
International Workshop on the Algorithmic Foundations of Robotics
(WAFR). Springer, 2016.

[24] Oskar von Stryk. Users guide for DIRCOL version 2.1. Simulation
and Systems Optimization Group, Technische Universität Darmstadt,
www. sim. informatik. tu-darmstadt. de/sw/dircol, 1999.

[25] Andreas Wächter and T. Lorenz Biegler. On the implementation of
an interior-point filter line-search algorithm for large-scale nonlinear
programming. Mathematical Programming, 106(1):25–57, 2005.

[26] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, and
B. Morris. Feedback control of dynamic bipedal robot locomotion.
CRC press Boca Raton, 2007.

	Introduction
	Modeling of Hybrid Dynamical System
	Hybrid System and Directed Graph
	Continuous and Discrete Dynamics
	Rigid Body Kinematics and Dynamics

	control
	Virtual Constraint based Feedback Controller
	Hybrid System Simulation

	optimization
	Direct Collocation Optimization
	Interface to NLP Solvers

	Case Studies
	ATLAS: Multi-Contact Periodic Walking
	DRC-HUBO: Dynamic Arm Swing

	Conclusions and Future Work
	References

