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Abstract—Hybrid zero dynamics (HZD) has emerged as a
popular framework for dynamic walking but has significant
implementation difficulties when applied to the high degrees of
freedom humanoids. The primary impediment is the process of
gait design—it is difficult for optimizers to converge on a viable
set of virtual constraints defining a gait. This paper presents
a methodology that allows for fast and reliable generation of
dynamic robotic walking gaits through the HZD framework,
even in the presence of underactuation. Specifically, we de-
scribe an optimization formulation which builds upon the novel
combination of HZD and direct collocation methods. Further,
achieving a scalable implementation required developing a defect-
variable substitution formulation to simplify expressions, which
ultimately allows us to generate compact analytic Jacobians of
the constraints. We experimentally validate our methodology on
an underactuated humanoid, DURUS, a spring-legged machine
designed to facilitate energy-economical walking. We show that
the optimization approach, in concert with the HZD framework,
yields dynamic and stable walking gaits in hardware with a total
electrical cost of transport of 1.33.

I. INTRODUCTION

HUMANOID robots have long held the promise of walk-
ing around in the human world the dynamic way that

people walk. While humans and other biological bipeds can
perform these motions with relative ease, translating such
dynamic behaviors to 3D humanoids is a challenging task. The
rapid development of mechanical and actuation capabilities of
modern robots has already made more dynamic locomotion
possible. The faster and more nimble we demand these ma-
chines to be, the more the robot needs to reason about its full-
order dynamics. It can be helpful to tilt on the edges of its
feet for toe-off or heel-strike maneuvers, exploit soft compliant
linkages for impact reduction, or embrace the underactuated
dynamics of falling forward to the advantage of locomotion.
Due to the nonlinearities and high degrees of freedom of the
multi-body systems, however, planning dynamic motion that
reconciles the full body dynamics of the complex robot model
has been primarily prevented by a particular computational
bottleneck: gait synthesis.
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A. Related Works
Many existing methods for planning humanoid locomotion

typically use simplified reduced-order models as a basis to
mitigate the complexity of the full-order gait planning opera-
tion. These approaches plan trajectories for a low-dimensional
dynamical model which approximates the full-order robot
dynamics by enforcing specific kinematic constraints. For
instance, the arguably most commonly used linear inverted
pendulum model (LIPM) assumption requires a constant center
of mass (COM) velocity in the vertical direction and typically
fully actuated systems. By enforcing the zero moment point
(ZMP) criteria, which requires the ZMP position always rest
within the support polygon of the robot feet [1], motion
generators can plan the COM position to ensure fall-free
motions [2]–[4], or quickly compute recovery steps [5], [6].
The whole body motions are then generated via inverse
kinematics or inverse dynamics techniques by conforming
the robot to these analytically tractable models. The simple,
often linear, form of system dynamics expedites planning
the walking gait online to accommodate the changes in the
surrounding environment [7], [8]. The maturity and reliability
of the simplified model based planning made it a prevalent
component in control approaches at the DARPA Robotics
Challenge [9]–[11]. While these model-simplification methods
have many implementation advantages, they also limit the
flexibility of the walking behaviors, often resulting in a rather
artificial motion when compared to natural human walking.
Further, these methods typically require a fully actuated foot
design, a property not present in some of the most agile [12],
robust [13], or efficient [14] bipedal robots.

Recently, the development of advanced optimization tech-
niques permits the use of more complicated dynamic models
as the foundation of gait planning [15], [16]. In particular,
Posa et al. have successfully generated multi-contact walking
gaits for a simulated model of the 3D ATLAS robot using
direct collocation-based constrained whole body dynamic op-
timization [17]. Similar optimization-based approaches have
also been deployed to generate versatile and dynamic motions
by using the machine’s centroidal dynamics and whole-body
contact forces as a foundation for humanoid planning [18],
[19]. In those applications, the whole body dynamics are
represented by the six-dimensional COM dynamics using the
augmented linear and angular momentum at the COM due
to the ground contact forces, while joint torques are assumed
away as internal forces of the system [6]. Further, researchers
have started to consider the contact wrench sum (CWS) criteria
as the stable balancing condition instead of the traditional ZMP
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Fig. 1: Illustration of the process used to generate dynamic 3D walking with DURUS. This direct collocation framework parses
a multi-body model of the robot and a set of virtual constraints into a large and sparse nonlinear program (NLP) with upwards
of 10,000 design variables and constraints. Large-scale algorithms typically solve this NLP in under 10 minutes, thereby
optimizing a dynamic gait for the 3D humanoid that exploits the full body dynamics of the machine, despite underactuation.

approach to realize more versatile locomotion. It requires that
the contact wrench sum must lie within the contact wrench
cone (CWC) to keep the dynamic balance of the robot [20].
The stability criterion is checked by examining if the contact
wrench sum is equal to the rate of change in the linear and
angular momentum of the robot. This condition is coupled
with the COM dynamics to formulate a nonlinear constrained
optimization problem to generate more dynamic gaits for full-
order humanoids [10], [21].

On the other end of the spectrum, the Hybrid Zero Dy-
namics (HZD) control framework is designed to mathemati-
cally support stable control of dynamic maneuvers of hybrid
dynamical systems, such as bipedal locomotion [22], [23].
HZD defines the gait by designing a set of virtual con-
straints enforced via feedback control of the actuated joints.
If these virtual constraints are invariant through impact, all
of the stability properties of the high-dimensional system
are captured in a lower-dimensional representation, termed as
the hybrid zero dynamics, without making any simplification
assumptions of the model. Since its inception, HZD has built
a strong history of success in planar robot implementations
for bipedal walking [24]–[29] and running [30], [31]. Recent
work has begun expanding the method into 3D applications
with highly underactuated robots [32], [33]. Robust and stable
walking gaits were realized using systematic virtual constraints
optimization approaches to accommodate the unknown varia-
tion of terrain heights and lateral balancing of point-feet 3D
bipeds [34], [35].

B. Problem Statement

This vital task of finding an appropriate set of virtual
constraints (and parameters thereof) is typically relegated
to a nonlinear optimization problem. When robots have as
many linkages as humanoids, optimizing motions which meet

HZD criteria becomes increasingly tricky for nonlinear pro-
gramming (NLP) tools to solve. This has been a significant
impediment toward applying HZD to full humanoid robots,
which have far more degrees of freedom than planar bipeds.
In a broader view, this is where the HZD approach has had
to pay the piper for its admissibility of highly dynamic gaits.
Traditional HZD gait optimization approaches optimize only
parameters and boundary state values, reflecting an instinctive
desire to minimize the number of design variables for the
optimization [36], [37]. Intuitively, one might assume that such
minimization of the nonlinear programming problem’s dimen-
sionality would be an advisable practice for maximizing an
optimization’s speed and reliability. However, this formulation
is prone to many issues, such as nonsmooth approximations
of the constraint Jacobian [38] and the “tail wagging the
dog” phenomenon [39], which can introduce pseudo-minima
or merely cause the algorithm to fail to find a solution. Given
the nonlinearity of bipedal robot dynamics, it can be difficult
to achieve reliable convergence via this optimization and often
relies on expert users to seed it.

With a goal of removing the limitations of applying the
HZD control framework to high-dimensional humanoids, our
approach unifies virtual constraint optimization with a tech-
nique from the trajectory optimization community: direct
collocation [40], [41]. A direct collocation formulation rep-
resents both the time-varying states and inputs as parameter-
ized curves, where system dynamics are enforced as equality
constraints (called defect constraints) in a nonlinear program.
By eschewing the need for time-marching integration schemes
(as per shooting methods) in favor of these local defect
constraints, open the possibility of expressing all optimization
constraints in closed-form. Fully algebraic constraint expres-
sions allow for symbolic Jacobians with fast evaluation times
and high accuracy, which is critical for the scalability of the
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gait optimization. By necessity, this work also takes care in
addressing the scalability of constraint expression sizes, which
can quickly explode to intractable proportions. Specifically,
we present our formulae by systematically introducing de-
fect variables into the constraints which avoid symbolically
verbose operations, keeping the resulting expressions simple.
Further, by carefully indexing the optimization variables and
constraints, we further simplify the Jacobian matrix to have
a banded structure, enabling efficient evaluation and use by
standard large-scale NLP solvers. All such components of this
process were crucial in engineering fast and reliable optimiza-
tions which synthesize HZD gaits for humanoid robots.

As validation of this approach, we use this computation-
ally scalable framework to DURUS, a 23-DOF spring-legged
humanoid robot. DURUS is designed for energy-economical
locomotion, including soft distal springs at the ankles to absorb
hard impacts. This significant non-joint-collocated compliance
serves as an appropriate platform for testing dynamic gaits.
To show the flexibility of the synthesis process (illustrated in
Fig. 1), we present a set of hardware experiments demonstrat-
ing planar multi-contact “heel-toe” walking and 3D flat-footed
dynamic locomotion on DURUS. We achieved sustained 3D
walking that continues for hours with a single battery pack
without falling. We further report this energy-optimized gait
as having high energy economy in the experiment (COT:
1.33), demonstrated that we can successfully control the robot
hardware while still taking advantage of its energy-conscious
underactuated design.

A preliminary presentation of this work was outlined in [42],
but with a less-complete description of the formulation and
fewer validating experiments. This manuscript elaborates on
the total generalized framework, as well as more specific
formulation which allow for fast execution (such as indexing
methods). This paper further supports the scalability and gen-
erality of the approach through application to additional multi-
domain bipedal locomotion cases (e.g., heel-toe walking).

The structure of this paper is as follows. Section II reviews
the formal definition of the general multi-domain hybrid
control system, and Section III introduces the design of virtual
constraints for bipedal locomotion. In Section IV, we propose
a virtual constraints optimization framework based on direct
collocation methods. Section V uses the proposed framework
to design two different types of walking for DURUS and
generates energy-efficient gaits for each case respectively.
Experimental results of two different walking gaits on DURUS
are presented in Section VI, including sustained 3D walking,
followed by the discussion and conclusion in Section VII.

II. BIPEDAL LOCOMOTION AS HYBRID SYSTEMS

Bipedal locomotion consists of a collection of continuous
phases (or domains), with discrete events triggering transitions
between these continuous phases; formally modeling this
interplay of continuous and discrete dynamics results in a
multi-domain hybrid system model.

A. Formal Definition of Multi-Domain Hybrid Systems
During a steady-state walking gait, the transitions between

different phases become ordered and periodic; this motivates
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Fig. 2: A typical periodic human walking pattern can be
represented as a directed cycle of four discrete domains with
different contact conditions (red circles in the figure).

the use of a multi-domain hybrid system with a predetermined
ordering of domains as represented by a directed cycle, i.e., a
cyclic directed graph.

Definition 1. A directed cycle is a directed graph Γ = (V,E),
with V = {v1, v2 . . . , vnp} a set of vertices and E = {e1 =
(v1 → v2), e2 = (v2 → v3), . . . , enp = (vnp → v1)} a set
of edges. Let sor : E → V and tar : E → V be the maps
that determine the source vertex and target vertex of an edge,
respectively. In other words, any e ∈ E can represents as e =
{sor(e)→ tar(e)}. For a directed cycle, sor and tar are one-
to-one and onto. Hence, their inverse maps sor−1 : V → E
and tar−1 : V → E exist and are well-defined.

Example 1. In Fig. 2, a four-domain directed cycle illustrates
the domain structure of a typical human walking gait pattern
that consists of four discrete phases depending on different
contact conditions [43]. This directed cycle Γ = (V,E)
consists of four vertices and four edges:

V = {ts, tl, hl, hs},
E = {ts→ tl, tl→ hl, hl→ hs, hs→ ts}.

Definition 2. A hybrid control system is a tuple,

H C = (Γ,D,U , S,∆,FG), (1)

where Γ = {V,E} is a directed cycle, D = {Dv}v∈V is a
set of admissible domains, U is a set of admissible control
inputs, S = {Se}e∈E is a set of guards or switching surfaces,
∆ = {∆e}e∈E is a set of reset maps that dictate the discrete
transitions triggered at Se, and FG = {FGv}v∈V is a set of
control systems that determine the continuous dynamics of the
system on a domain Dv .

Utilizing the formal definition of multi-domain hybrid sys-
tems, we have the framework necessary to discuss how the
Lagrangian and contact constraints—such as foot contacts with
the ground—of the mechanical system of a bipedal robot are
used to determine each element of the hybrid system model.

B. Hybrid System Models for Bipedal Locomotion

In this section, we review the mathematical formulation of
each element of the hybrid control system model for dynamic
bipedal locomotion based on a generalized robot model. The
multi-body system of a robot is often modeled as a kinematic
tree of rigid links. Motivated by the desire to consider robots in
a generalized position, i.e., not impose assumptions on contact
constraints, we use the floating base coordinates of a robot
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Fig. 3: Geometric illustration of the flat foot ground contact.

(see [44]). Let R0 is a fixed inertial frame and Rb is a reference
frame rigidly attached to the base link of the robot, then the
Cartesian position pb ∈ R3 of the origin and the orientation
φb ∈ SO(3) of Rb with respect to R0, respectively, compose
the floating base coordinates of the robot. Let qr ∈ Qr be
the joint coordinates of a robot, the floating-base generalized
coordinates can be defined as

q = (pb, φb, qr) ∈ Q = R3 × SO(3)×Qr ⊆ Rn, (2)

where n is the total degrees of freedom of the system.
Domains. A specific admissible domain is determined by the
associated contact conditions. In this paper, we use holonomic
constraints to model the robot’s physical contacts with the
external environment. With Cv as an indexing set of all
holonomic constraints defined on Dv , we state the holonomic
constraints of this domain as

ηv = {ηc}c∈Cv ≡ constant.

and the associated kinematic constraints as Jv(q)q̇ = 0, where
Jv(q) is the Jacobian matrix of ηv , i.e., Jv(q) = ∂ηv

∂q . It was
shown in [44], [45] that the foot contact with the ground is
unilateral in essence. Hence, a certain set of conditions should
be imposed on the contact wrenches, λv , in order to satisfy
the holonomic constraints assumption. Specifically, we state
these conditions as:

νv(q)λv(q, q̇, u) ≥ 0, (3)

where νv(q) depends on the geometric parameters of the
contacts, such as the size of the robot feet and the friction
coefficient with the ground. It can be noted that here we
explicitly show the dependence of contact wrenches on the
system states and control inputs. For some domains, additional
unilateral constraints related to the robot postures, denoted by
hv(q) > 0, should also be considered. Combining (3) and uni-
lateral constraints together yields the domain of admissibility:

Dv = {(q, q̇, u) ∈ TQ× U|Av(q, q̇, u) ≥ 0}, (4)

for v ∈ V , where

Av(q, q̇, u) =

[
νv(q)λv(q, q̇, u)

hv(q)

]
≥ 0, (5)

defines the boundary condition of the domain manifold.

Example 2. During the single support domain of a typical
flat-footed walking gait, the stance foot should lie flat on
the ground. Thus, the associated holonomic constraints can

be defined as the Cartesian position of a fixed point p, as
shown in Fig. 3, on the stance foot link and the orientation
of the stance foot link is constant. The corresponding contact
wrenches consist of three constraint forces, (λfxc , λfyc , λfzc ),
and three constraint moments, (λmxc , λmyc , λmzc ), respectively.
Conditions on contact wrenches include: (1) the ground reac-
tion force should not be negative; (2) feet should not slide on
the ground; and (3) the robot should not roll over the edge of
the feet. These conditions can be stated as:

λfzc ≥ 0, (6)√
(λfxc )2 + (λfyc )2 < µcλ

fz
c , λ

mz
c < γcλ

fz
c , (7)

−laλfzc < λmxc < lbλ
fz
c , −Lbλfzc < λmyc < Laλ

fz
c , (8)

where µc and γc are the linear and torsional friction coefficient
respectively. The inequalities in (8) is also referred as the
Zero Moment Point conditions [1], [44]. In addition, we also
require that the height of the swing foot should be positive,
so that the swing foot is always above the ground. This
can be formulated as a unilateral constraint: pznsf (q) ≥ 0.
These unilateral constraints on contact wrenches and robot
kinematics form the domain of admissibility condition in (5).

Continuous Dynamics. With the mass, inertia and length
properties of each link of the robot, the equation of motion
(EOM) of the constrained dynamical system for a given
domain Dv is determined by the classical Euler-Lagrange
equation and holonomic constraints of the domain [46]:

D(q)q̈ +H(q, q̇) = Bvu+ JTv (q)λv, (9)

Jv(q)q̈ + J̇v(q, q̇)q̇ = 0. (10)

where D(q) is the inertia matrix, H(q, q̇) = C(q, q̇)q̇ +G(q)
is the vector containing the Coriolis and gravity term, Bv
is the actuator distribution matrix. The wrenches λv can
be determined by solving (9) and (10) simultaneously [44].
Substituting the closed form solution of λv into (9) yields the
affine control system of the form,

ẋ = fv(x) + gv(x)u, (11)

with x = (q, q̇) ∈ X = TQ being the state of the system.
Guards. A guard Se is a proper subset of the boundary of the
domain, Dsor(e), determined by an edge condition associated
with the transition from Dsor(e) to the following domain,
Dtar(e). Let He(q, q̇, u) be an appropriate element from the
vector in (5) corresponding to a transition, then the guard is
defined as

Se = {(q, q̇, u) ∈ Dsor(e)|He(·) = 0, Ḣe(·) < 0}. (12)

Discrete Dynamics. When a guard is reached, it indicates
a change of the contact. For bipedal locomotion, it could be
when new contacts are established, e.g., the heel or sole of the
swing foot hits the ground, or when existing contacts break,
e.g., the lift-off event of the swing foot. As a consequence,
the states of the robot will undergo a discrete change. This
discrete dynamics of the system can be captured as a reset
map that projects the current states of the system, at the current
phase’s guard, to the following domain. In particular, we model
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the robot and groud as rigid bodies. Hence, given the pre-
impact states (q−e , q̇

−
e ) on the guard, the post-impact states

(q+e , q̇
+
e ) are computed by assuming a perfectly plastic impact

(if an impact occurs) [47], [48]. Following the presentation
in [44], the robot configuration is invariant through impact,
i.e., q+e = q−e . Because the impact occurs instantaneously due
to the rigid body assumption, the generalized momentum of
the system should be conserved, i.e.,

D(q+e )(q̇+e − q̇−e ) = JTtar(e)(q
+
e )δFtar(e), (13)

where δFtar(e) is a vector of the intensity of impulsive contact
wrenches over the infinitesimal impact event. This plastic
impact equation together with the holonomic constraints of
the subsequent domain determines the discrete jump of the
joint velocities, represented as q̇+e = ∆q̇(q)q̇

−
e . Therefore, the

reset map of a given guard can be written as

(q+e , q̇
+
e ) = ∆e(q

−
e , q̇

−
e ) :=

[
∆q(q

−
e )

∆q̇(q)q̇
−
e

]
, (14)

where ∆q(q
−
e ) represents the change in the robot configura-

tion, which is often an identity map (see Remark 1).

Remark 1. In the study of symmetric walking gaits, a bipedal
robot is often modeled regarding “stance” and “non-stance”
leg angles instead of physical “left” and “right” leg angles
to reduce the number of discrete domains. In these cases, the
robot configuration needs to be relabeled if there is a change in
the “stance” and “non-stance” leg, i.e., when the “non-stance”
leg becomes the “stance” leg. As a result, ∆q(q

−
e ) is no longer

an identity map. This relabeling process can be denoted as:

∆q(q
−
e ) := R(q−e ), (15)

where ∂R(q)
∂q has full rank. It is important to note that this map

is a linear map in many applications [49], [50].

III. VIRTUAL CONSTRAINTS BASED FEEDBACK CONTROL

In this section, virtual constraints are introduced as a
means to synthesize feedback controllers that realize dynamic
locomotion of a walking robot. Enforcing virtual constraints
results in a reduced dimensional representation of the full order
system that captures the natural dynamics of the robot.

A. Virtual Constraints

Analogous to holonomic constraints, virtual constraints
(also termed outputs in the control literature [49], [51]) are
defined as a set of functions that modulate the behavior of
a robot in order to achieve particular desired trajectories via
state-based feedback controllers. The term “virtual” comes
from the fact that these constraints are enforced via joint
actuators instead of mechanical constraints.

Definition 3. Given v ∈ V , yav = (ya1,v, y
a
2,v) is an ad-

missible combination of robot outputs consisting of velocity-
modulating outputs, ya1,v : Q → Rn1,v , and position-
modulating outputs, ya2,v : Q → Rn2,v . With mv as the
total number of admissible controls and nv as the total

number of holonomic constraints, the total number of position-
modulating outputs, n2,v , is determined by

n2,v =

{
mv − n1,v, if mv ≤ n− nv,
n− nv − n1,v, if mv > n− nv.

(16)

Let Ov be an indexing set for yav whereby yav (q) =
{ya1,o(q), ya2,o(q)}o∈Ov

. A output combination is independent
if the Jacobian of yav (q) has a full rank.

Remark 2. The idea of the velocity modulating output origi-
nates from the study of human-inspired control. By analyzing
human locomotion data, Ames et al. proposed that the forward
hip velocity appear to be an approximately constant value [52].
Hence, if there are enough admissible actuators present in
the bipedal robot, the forward velocity can be controlled
via feedback controllers as a velocity-modulating output. The
admissible condition is determined by whether or not the
forward velocity of the hip is fully controllable. For example,
we define the forward velocity as the velocity-modulating
output only when the stance foot is flat on the ground, and
both the ankle and knee joints are actuated.

Given a group of actual robot outputs as in Definition 3,
the virtual constraints are defined as the difference between
the actual and desired outputs of the robot:

y1,v(q, q̇, αv) = ẏa1,v(q, q̇)− yd1,v(τ(q), αv), (17)

y2,v(q, αv) = ya2,v(q)− yd2,v(τ(q), αv), (18)

for v ∈ V , where y1,v and y2,v are relative degree 1 and rela-
tive degree 2 by definition, respectively, and αv := {αo}o∈Ov

is the set of parameters for the desired outputs. Though the
desired output can be represented in various function forms,
we typically define desired outputs as follows: the desired
velocity-modulating output (if present) is assumed to be a con-
stant, and the desired position-modulating outputs are given in
term of Bézier polynomials. Further, the desired outputs often
are defined as functions of a state-based parameterization of
time τ(q) so as to create an autonomous control system, which
is more robust than non-autonomous systems [23]. τ(q) must
be a strictly monotonic (increasing or decreasing) function
over a specific duration of time, such as a step cycle.

B. Partial Hybrid Zero Dynamics

With the goal of driving the virtual constraints yv =
(y1,v, y2,v) → 0 exponentially, consider the feedback lin-
earization control law with a control gain ε > 0,

uεv = −A−1v
([

Lfvy1,v
L2
fv
y2,v

]
+

[
εy1,v

2εẏ2,v + ε2y2,v

])
, (19)

where Lf and L2
f are the first and second order Lie derivatives

and Av is the decoupling matrix which is invertible due to
the specific choice of virtual constraints [49]. Applying this
control law yields linear output dynamics of the form:

ẏ1,v = −εy1,v, (20)

ÿ2,v = −2εẏ2,v − ε2y2,v, (21)

which are exponentially attractive to the origin, i.e., yv → 0.
Applying the feedback controllers given in (19) in each domain
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Fig. 4: Illustration of the PHZD periodic orbit in the case of
a two-domain hybrid system.

of the hybrid control system (1) yields a hybrid system model,
given as

H = (Γ,DX , SX ,∆,FX), (22)

where DX = {DXv }v∈V is a set of admissible domains with
DXv ⊆ X a smooth submanifold of the state space X only,
SX = {SXe }e∈E is a set of guards with SXe ⊂ DXv , and FX =
{FXv }v∈V is a set of restricted dynamical systems defined on
DXv , i.e., ẋ = fXv (x) with x ∈ DXv . The control law in (19)
renders the reduced-dimensional zero dynamics submanifold

Zv = {(q, q̇) ∈ DXv |y1,v = 0, y2,v = 0, ẏ2,v = 0}, (23)

invariant during the continuous domains [49]. However, it is
not necessarily invariant through discrete dynamics due to
impacts. Moreover, if the reset map involves a plastic impact, it
is impossible to guarantee the velocity-modulating output to be
constant due to the change in velocities caused by the impact.
In this case, we instead consider the partial zero dynamics
manifold on which only the position-modulating outputs have
zero errors, i.e.,

PZv = {(q, q̇) ∈ DXv |y2,v = 0, ẏ2,v = 0}. (24)

If there exists a set of parameters α = {αv}v∈V so that for
any edge e ∈ E, the submanifold PZv is impact invariant if

∆e(x) ∈ PZtar(e), ∀x ∈ SXe ∩ PZsor(e). (25)

A manifold PZ =
⋃
v∈V PZv is called hybrid invariant if

it is invariant over all domains of continuous dynamics and
impact invariant through all discrete dynamics, i.e., solutions
that start in PZ remain in PZ , even after impulse effects (see
Fig. 4). If a feedback control law renders PZ hybrid invariant,
then we say that the multi-domain hybrid control system has
a partial hybrid zero dynamics (PHZD). By enforcing partial
hybrid zero dynamics, the full order dynamics of the hybrid
system can be represented as a reduced-dimension dynamical
system that is independent of control inputs. Moreover, the
stability properties of periodic solutions of the full order
dynamics can also be determined by this low-dimensional
representation [53].

Remark 3. The PHZD is not a mandatory requirement if a
velocity-regulating output is not present in the design. Further,
one could still consider the hybrid zero dynamics if the desired
velocity output is not a constant. However, introducing the

partial zero dynamics not only allows us to command a
constant desired velocity, but also the evolution of y1 is now
solely determined via the linear output dynamics given in (20)
and is independent of τ . This allows for a driving element that
pushes the robot forward regardless of the state of the phase
variable. Hence, in the remainder of this paper, we will focus
our discussion only on the partial hybrid zero dynamics.

Designing a dynamic walking gait for humanoids using
virtual constraints based feedback controllers requires de-
termining a valid set of gait parameters, α, that satisfies
the PHZD requirements and the robot’s physical constraints.
Finding such parameters is typically regulated as a nonlinear
optimization problem. Existing approaches often use direct
shooting methods, such as single shooting [23], [54] or mul-
tiple shooting [55], to solve such an optimization problem.
However, these approaches become increasingly intractable for
3D humanoids or highly underactuated robots. The reasons
are twofold: the hybrid zero dynamics becomes increasingly
unstable for robots with high degrees of underactuation and
obtaining equations of motion for the reduced dimensional
system explicitly is computationally challenging for systems
with as many linkages as humanoids. Consequently, the direct
shooting methods run into scalability issues with increasing
degrees of freedom robots due to the necessity of explicit
forward integration of the zero dynamics.

IV. DIRECT COLLOCATION BASED HZD OPTIMIZATION

In this section, we present the core contribution of the
paper—a novel scalable optimization formulation of multi-
domain humanoid locomotion based on the direct collocation
method. The direct collocation method works by replacing
the explicit forward integration of the dynamical systems
with a series of defect constraints via implicit Runge-Kutta
methods. The usage of implicit Runge-Kutta methods, which
have better convergence properties for unstable systems than
explicit methods, enables the direct collocation method to
optimize dynamic gaits for highly underactuated robots. Fur-
ther, we tackle the scalability issue by decoupling complicated
constraints into several simpler constraints by introducing
defect variables, which are supplementary decision variables
that could have been computed in closed-form solutions.

A. Constrained Dynamics
An important feature of direct collocation method is that

it allows for expressing the system dynamics in an implicit
differential algebraic equations (DAEs) form. This motivates
us to use the full-order constrained dynamics on PHZD man-
ifolds in the optimization. Recall that the partial hybrid zero
dynamics represents a restricted sub-manifold on which both
holonomic constraints and virtual constraints vanish. Based
on the previous discussions in Section II and Section III, we
can state the constrained dynamics as an index-1 differential
algebraic equations problem

Fv(·) :=


D(q)q̈ +H(q, q̇)−Bvu− JTv (q)λv
Jv(q)q̈ + J̇v(q, q̇)q̇
ẏ1,v + εy1,v
ÿ2,v + 2εẏ2,v + ε2y2,v,

 = 0 (26)
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subject to the initial value conditions at t = t0, given as

ηv(q(t0)) = η̄v, Jv(q(t0))q̇(t0) = 0, (27)
y2,v(q(t0), αv) = 0, ẏ2,v(q(t0), q̇(t0), αv)= 0, (28)

where η̄v is a vector of constants determined by the contact
conditions.

Lemma 1. Supposing that φv(t) ⊂ X is a solution of the
DAE system, Fv(·) = 0, subject to initial conditions specified
in (27) and (28), then φv(t) ⊂ PZv . That is, φv(t) is also a
solution on the partial hybrid zero dynamics.

Proof. The result follows immediately from the construc-
tion of the constrained dynamics. By assumption, φv(t0) =
[q(t0), q̇(t0)]T satisfies the initial conditions in (27). Further,
the second equation in (26) guarantees that ηv(q) ≡ η̄v along
any solution of (26). Let Xv be the canonical projection of Dv
onto the state space X , then φv(t) ⊂ Xv . Similarly, the third
and fourth equations in (26) stabilize the virtual constraints
exponentially to the origin. Considering that y2,v(t0) = 0 and
ẏ2,v(0) = 0, therefore, we have

y2,v(q(t), αv) = 0,

ẏ2,v(q(t), q̇(t), αv) = 0

for all t0 ≤ t ≤ tf until the solution φv(t) reaches a guard, i.e.,
φv(tf ) ∈ Xv∩Ssor−1(v). By the definition of the partial hybrid
zero dynamics in (24), we conclude that φv(t) ⊂ PZv .

Remark 4. The implicit DAEs given in (26) yields a equiva-
lent representation of the reduced dimensional robot dynamics
on the PHZD manifold. Instead of computing the reduced
order dynamics in terms of zero dynamics coordinates as in
traditional HZD literature [23], [49], we express the restricted
dynamics in the form of implicit differential algebraic equa-
tions. From a technical perspective, computing the symbolic
expressions of Fv(·) would be easier and less time consuming
compared to the traditional zero dynamics equations (cf. Eq.
(63) in [49]). As we shown in later sections, ully utilizing
this fact in the direct collocation optimization is the key to
unifying the HZD and direct collocation methods.

B. Modified Direct Collocation Optimization

In this section, we modify the classic Hermite-Simpson col-
location scheme so that the system dynamics can be imposed
as implicit forms, e.g., (26). Specifically, we first discretize
each continuous domain into Nv intervals, then introduce
q(i), q̇(i), q̈(i), u(i), and λ

(i)
v as NLP decision variables at

each discrete node. We denote qv , q̇v , q̈v , uv , and λv as
collections of variables defined on all nodes, and α∗v as the
virtual constraint parameters which need to be determined for
a specific domain Dv . Assuming TI,v > 0 is the time at which
the system reaches the guard associated with the given domain,
the time discretization is defined as

0 = t0 < t1 < t2 < · · · < tNv = TI,v, (29)

with Nv = 2(N c
v − 1), where the even points are called

cardinal nodes and the odd points are called interior nodes
(see Fig. 5). The total number of cardinal nodes specified per

Fig. 5: Illustration of defect constraints and node distribution.

domain, N c
v , must be greater than 1, and an interior point must

be placed at the center of two adjacent cardinal nodes.

Remark 5. In the classic Hermite-Simpson method, the states
at interior nodes and the slope ẋ at cardinal nodes are
computed in closed-form and are not considered as variables.
For a high-dimensional dynamical system, particularly when
the system dynamics cannot be determined explicitly, such for-
mulation will harm the convergence of the overall optimization
problem. Moreover, u and λv can be also computed in closed-
form in the HZD framework, but it requires inverting matrices
such as D(q) and Av(q). In our formulation, we introduce
them all as defect variables, so that the collocation constraints
and system dynamics will be decoupled and complicated
closed-form calculations can be avoided.

Collocation Constraints. Given the discretization, we first use
Hermite interpolation polynomials to approximate the solution
within two neighboring cardinal nodes using the estimated
states x(i) = (q(i), q̇(i)) and slopes ẋ(i) = (q̇(i), q̈(i)). The
following two defect constraints at each interior node, i, must
be satisfied to ensure the polynomials are indeed accurate
approximations of the dynamical system solutions [39], [40]:
(1) the difference between x(i) and the interpolated states x̄(i)

from the approximated polynomial (δ(i) in Fig. 5), and (2) the
difference between ẋ(i) and the slope of the polynomial (ζ(i)

in Fig. 5). These constraints can be stated as1,

ζv(qv, q̇v, q̈v) :=
[
ζ(1) ζ(3) · · · , ζ(Nv−1)

]T
= 0, (30)

δv(qv, q̇v, q̈v) :=
[
δ(1) δ(3) · · · , δ(Nv−1)

]T
= 0, (31)

for each v ∈ V , where

ζ(i) := ẋ(i) − 3

2∆t(i)
(x(i+1) − x(i−1)) +

1

4
(ẋ(i−1) + ẋ(i+1)),

δ(i) := x(i) − 1

2
(x(i+1) + x(i−1))− ∆t(i)

8
(ẋ(i−1) − ẋ(i+1)),

with ∆t(i) = ti+1 − ti−1 for i ∈ {1, 3, 5, . . . , Nv − 1}.
PHZD Constraints. To ensure that the approximated so-
lution is indeed a solution of the restricted partial hybrid
zero dynamics of the robot, we enforce that the dynamic
equations in (26) and the domain of admissibility conditions
as in (4) at all nodes. Let F v(qv, q̇v, q̈v,uv,λv, α

∗
v) and

1An animated version of the illustration of direct collocation formulations
can be found in https://youtu.be/aL-B2eIoCK4.

https://youtu.be/aL-B2eIoCK4
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Av(qv, q̇v,λv) be the vectors that are obtained by stacking
Fv(q

(i), q̇(i), q̈(i), u(i), λ
(i)
v , α∗v) and Av(q

(i), q̇(i), λ
(i)
v ) for all

i ∈ [0, Nv], respectively, these constraints can be stated as,

F v(qv, q̇v, q̈v,uv,λv, α
∗
v) = 0, (32)

Av(qv, q̇v,λv) ≥ 0. (33)

for all v ∈ V . Moreover, the initial value conditions in (27)
and (28) should also be satisfied at the first node i = 0
of each domain. In addition, it must be guaranteed that the
system reaches the associated guard of a domain v ∈ V at
TI,v. This is equivalent to imposing the guard condition in
(12) at the last node of each domain. While the continuous
dynamics is satisfied by collocation constraints, the discrete
dynamics given in (42) can be directly imposed as an equality
constraint that connects the solutions of two neighboring
domains. Because this constraint involves variables defined on
two different domains, we denote 2(0v+) as a variable defined
on the first node of the next domain of Dv .

Let Z = {TI,v, qv, q̇v, q̈v,uv,λv, α∗v, η̄v}v∈V be the set of
NLP variables, the direct collocation based HZD optimization
problem can be stated as:

Z ∗ = argmin
Z

∑
v∈V
Jv(·)

s.t ζv(qv, q̇v, q̈v) = 0, (34a)
δv(qv, q̇v, q̈v) = 0, (34b)
F v(qv, q̇v, q̈v,uv,λv, α

∗
v) = 0, (34c)

Av(qv, q̇v,λv) ≥ 0 (34d)

He(q
(Nv), q̇(Nv), λ(Nv)

v ) = 0, (34e)

Ḣe(q
(Nv), q̇(Nv), λ(Nv)

v ) < 0, (34f)

∆e(q
(Nv), q̇(Nv))− (q(0v+), q̇(0v+)) = 0, (34g)

ηv(q
(0))− η̄v = 0, (34h)

Jv(q
(0))q̇(0) = 0, (34i)

y2,v(q
(0), αv) = 0, (34j)

ẏ2,v(q
(0), q̇(0), α∗v) = 0, (34k)

for all v ∈ V and e = sor−1(v) ∈ E, where Jv(·) is a
cost function. In particular, physical constraints (such as torque
limits, joint velocity and angle limits, etc.) can be imposed
directly as the limiting values of corresponding variables.

A cost function that consists of function integrals, which
is quite common in trajectory optimization problems, can be
approximated with Simpson’s quadrature rule [56]. Let L(·)
be a function that needs to be integrated over the continuous
domains, which is also termed as a running cost, we have

∫ tfv

t0v

Lv(·)dt =

Nv∑
i=0

wiLv(·), (35)

where wi is the integration weight of node i, which can be
determined by the Simpson’s quadrature rule. Specifically,
wi = 1

6∆t(i+1) if i = 0 or i = Nv , wi = 2
3∆t(i) if i is an

interior node, and wi = 1
3 (∆t(i−1)+∆t(i+1)) if i is a cardinal

node other than 0 and Nv . With the quadrature approximation,
the total cost function can be computed as

Jv(·) = Ev(·) +

Nv∑
i=0

wiLv(·), (36)

where Ev is a terminal cost that does not requires integration.

Remark 6. It is straightforward to verify from (26) that the
constraint wrenches, λ(i)v , are determined (implicitly) via the
second equation, and the control inputs, u(i), are determined
(also implicitly) from the linear output dynamics stated in the
third and fourth equations in (26). By definition, the control
inputs determined from the optimization are equal to the
feedback controllers defined in (19), which provides us with a
set of parameters α = {αv}v∈V that represent the optimal gait
behavior for the bipedal robot, rather than open-loop control
inputs that result in optimal trajectories. Hence, the control
inputs from the trajectory optimization problem are compatible
with the feedback control law defined on the PHZD manifold.
This feature is different from classic trajectory optimization
formulations, in which the control inputs are often assumed to
be open-loop and piecewise constant or linear.

Remark 7. The reset map constraint in (34g) can be simplified
with the introduction of defect variable δFv . Specifically, these
constraints can be imposed for all v ∈ V as

q(0v+) −R(q(Nv)) = 0, (37)

D(q(0v+))(q̇(0v+) −R(q̇(Nv)))− JTv+(q(0v+))δFv = 0. (38)

Remark 8. In particular, we include the constant vectors η̄v
as decision variables for the (desired) holonomic constraint
values so that they can be determined by the optimization.
These constants often include the gait properties such as
the step length and width. By including η̄v as optimization
variables, we have direct control over these properties in the
optimization. Moreover, if specific holonomic constraints are
defined on multiple domains, then they should be consistent
over the entire gait cycle. Similarly, if some virtual constraints
are defined on multiple domains, we often require that they use
the same parameter set αo to have smoother desired outputs.
Hence, we impose that

αv[o]− αv+[o] = 0, ∀ o ∈ (Ov ∩ Ov+), (39)
η̄v[c]− η̄v+[c] = 0, ∀ c ∈ (Cv ∩ Cv+). (40)

for all vertices except the last one, i.e., v ∈ V \{vnp
}. In

particular, o and c represent the indexing of the virtual and
holonomic constraints defined on the particular domains.

With the direct collocation formulation of hybrid zero
dynamics gait optimization, we can now state the main result
of the paper.

Theorem 1. Solving the constrained nonlinear programming
problem in (34) yields a set of optimal parameters α∗ and a
hybrid invariant periodic flow φ∗(t) such that φ∗(t) ⊂ PZα∗ .

Proof. Let φ̃∗v(t) be a piecewise continuous polynomial deter-
mined by the solution {T ∗I,v, q∗v, q̇

∗
v, q̈
∗
v} from the optimization

(34) for each domain Dv . Then from (34a)–(34c), φ̃∗v(t) is a
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approximated solution of the continuous constrained dynamics
(26) given relatively small time steps, and by the exponential
convergence of collocation methods [57], φ̃∗v(t) ⊂ Xv can
be considered as the exact solution, φ∗(t) ⊂ Xv , of (26), as
Nv → ∞ for each v ∈ V . Further, from (34e) and (34f), we
can conclude that

(q(Nv), q̇(Nv)) ∈ Se ∩ Xv, (41)

and from (34g), the solutions of two adjacent continuous
domains are connected via the reset map ∆e, i.e.,

φ∗v+(0) = ∆e(q
(Nv), q̇(Nv)). (42)

Both Fv and ∆e are C1 continuous by definition, therefore,
there exists an unique solution for some given initial condition
x(0). Moreover, with the reset map constraints, we have

φ∗(TI) = ∆e(q
(Nvnp

)
, q̇

(Nvnp
)
) = (q(0v1 ), q̇(0v1 )) = φ∗(0).

Hence, φ∗(t) is periodic due to the uniqueness of the so-
lution. In particular TI =

∑
v∈V TI,v is the period of the

periodic solution. The hybrid invariant of the periodic solution
can be verified by constraints (34i)–(34k). In other words,
φ∗(t) ⊂ PZv by Lemma 1, and (q(Nv), q̇(Nv)) ∈ Se ∩ PZv .
Moreover from (34g), we could easily conclude (42) holds
for each discrete transition. By Lemma 1, φv+(0) ∈ PZv+.
therefore

∆e(q
(Nv), q̇(Nv)) ∈ PZv+, (43)

for all v ∈ V . This shows that the solution is impact invariant
over all discrete dynamics. We also know that the solution
is forward invariant under the feedback controller u∗v . As a
result φ∗(t) ⊂ PZα∗ , where the partial hybrid zero dynamics
manifold, PZα∗ := PZv1 ∪ PZv2 · · · ∪ PZvnp

, depends on
the parameters α∗.

C. Sparse NLP Formulation

It is known that the direct collocation formulations signif-
icantly increase the number of constraints and optimization
variables, leading to a large nonlinear programming problem.
Yet, the Jacobian matrix of constraints is very sparse; the
density of the matrix is far less than 1% in many cases. This
feature allows the problem to be solved efficiently using large
sparse NLP solvers. To promote the convergence properties of
the problem, we will further exploit this sparsity structure of
the formulation.
Defect Variables. In the previous discussion, we have intro-
duced many defect variables to simplify the constraints. Now
we extend this idea to variables that affect the entire domain,
namely the duration TI,v and parameters αv . Specifically, we
define these variables at each node despite the fact that they
should be constant on a given domain. While at first glance
this modification seems counterintuitive and superfluous, it
bears distinct advantages. First, it distributes the “decision
weight” of these variables, so each design variable only affects
constraints on the neighboring points, not the entire domain.
This attribute is helpful for NLP solvers that iterate on linear
approximations of the problem (e.g., sequential quadratic

Fig. 6: The illustration of sparse Jacobian matrix construction.

programming (SQP) and interior point (IP)). To ensure these
variables are indeed the same at all nodes, we additionally
enforce the following linear constraints:

T
(i)
I,v − T

(i+1)
I,v = 0, (44)

α(i)
v − α(i+1)

v = 0 (45)

for all i ∈ {0, 1, 2, . . . , Nv − 1}.
Analytic Jacobian. For a gradient-based NLP solver, pro-
viding more accurate information is vital to its convergence.
Typically, the Jacobian of constraints and cost function are
computed via finite differencing or automatic differentiation
of functions. Despite being straightforward to compute, the
finite difference approach is very slow to evaluate numerically
and often has very low accuracy. Automatic differentiation
provides good accuracy, however, it often suffers from limita-
tions caused by restrictions on the tools available. On the other
hand, our formulation yields much simpler closed-form cost
and constraints, therefore generating the analytic Jacobian (or
gradient) of these expressions becomes feasible. In this work,
we use a custom-developed Wolfram Mathematica package to
symbolically compute the closed-form expression and the an-
alytic Jacobian of these functions. These symbolic expressions
then can be exported into C++ source codes and compiled as
static libraries that could be called by the NLP solver during
the optimization evaluation. The whole process is executed a
priori and only needs to generate once for the functions that
will be called multiple times at each optimization iteration.
Therefore, the overhead time of generating the symbolic
expressions will not affect the execution of NLP iterations.
Sparse Jacobian Construction. To expedite the optimization
evaluation, we exploit the sparsity pattern of the Jacobian
matrix further. First, we group variables and constraints that
defined at each node together, then assign indices for each
of them based on their locations at the entire variables and
constraints. For example, let ic be the indices of an arbitrary
constraint c, and jx be the indices of dependent variables xc of
the constraint c. Then the Jacobian of this constraint is given
by a nc × nx matrix with nc = Dim(ic) and nx = Dim(jx).
Based on the indices of variables and constraints, the large
sparse Jacobian matrix can be constructed based on the com-
pressed column storage (CCS) format [58]. Combining indices
and values of non-zero elements of all constraints, the whole
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Jacobian matrix of constraints is created using the MATLAB
function, sparse. See Fig. 6 for an illustration of this process.

V. APPLICATIONS ON AN UNDERACTUATED HUMANOID

In this section, we apply the hybrid zero dynamics frame-
work and direct collocation optimization to explicitly generate
two different types of dynamic and energy-efficient walking
gaits on DURUS—a spring-legged humanoid robot.

A. DURUS Model

DURUS is a three-dimensional humanoid robot designed
and built by SRI International to implement efficient and
dynamic locomotion. DURUS consists of fifteen actuated
joints and two passive springs. The passive springs, which are
rigidly fixed to and perpendicular to the bottom of each foot,
are designed to reduce the energy loss during foot impact while
walking. Here we use the floating base coordinates, assuming
that the origin of the six-dimensional base coordinates is
located at the center of the pelvis link (see Fig. 7). The
generalized coordinates, q ∈ Q ⊂ RnR

with nR = 23, of
the robot are then determined by (2) where qr consists of 15
actuated joints and 2 passive springs shown in Fig. 7. For
the convenience of conventions, we define the generalized
coordinates of the robot in terms of stance and non-stance leg
angles, instead of left and right leg angles. Followed by this
definition is a relabeling of coordinates at foot impact due to
the change of stance leg, which can be done by a linear map,
R : Q → Q, in which left and right leg angles are switched
accordingly and the sign of all roll and yaw angles, as well as
the base position in y−axis direction, are “flipped”. For the
sake of simplicity, we assume the right leg is the stance leg
in the remainder of the section.

B. 3D Flat-Footed Walking

We start with the 3D flat-footed walking—one of the most
commonly seen robotic walking behaviors. The term “flat-
footed” indicates that the feet remain flat with respect to
the ground plane. It is used to distinguish walking from
the multi-contact case—which will be discussed later—where
feet can be angled in any number of ways. In the following
discussions, we denote p2(q) = [px2, p

y
2, p

z
2]T : Q → R3

as the three dimensional Cartesian position of a point in R0,
and φ2(q) = [φx2, φ

y
2, φ

z
2]T : Q → SO(3) as the three

dimensional orientation of the link with respect to R0. The
subscript 2 indicates the name of the contact point.

Hybrid System Model. The design of passive springs at
the end of each leg permits a non-trivial double support
phase, therefore, the hybrid system model of 3D flat-footed
walking of DURUS consists of two domains: a double-support
domain, Dds, and a single-support domain, Dss. Specifically,
the holonomic constraints for each domain of 3D flat-footed
walking are given by,

ηds(q) := (psf , φsf , pnsf , φnsf ) ∈ R12,

ηss(q) := (psf , φsf ) ∈ R6,

Rb

R0

x y

z

Rb(pb,φb)

θlh

ψrh φw

θlk

θlarrs

x

y
z ψlh

θrh

θrk

θra

θw

φrh

φlh

φla

φra

ψw

rls

Fig. 7: The generalized coordinates of the DURUS robot,
where R0 is the inertial frame, Rb is the robot base frame
located at the center of the pelvis with pb, φb is the position
and orientation of Rb. ψw, φw, and θw are the waist yaw, roll,
and pitch angles, ψlh, φlh, θlh, θlk, θla, φla, and rls are the
left hip yaw, hip roll, hip pitch, knee pitch, ankle pitch, ankle
roll angles, and spring deflection, respectively, and ψrh, φrh,
θrh, θrk, θra, φra, and rrs are the right hip yaw, hip roll, hip
pitch, knee pitch, ankle pitch, ankle roll angles, and spring
deflection, respectively. The red arrow of each joint represents
the positive rotation (or translation) axis of the corresponding
joint using the right-hand rule.

lstep

wstep

wf

lf

pnsf

psf
psh pst

I

pnsf
pnstpnsh

pnsfO

Fig. 8: Illustration of the location of foot contacts.

where sf and nsf be a point on the stance foot and non-stance
foot respectively (see Fig. 8). The admissibility conditions for
each domain are determined according to the discussion in
Example 2. In addition, the non-stance foot should be always
above the ground during the single-support domain, which
could be formulated as an unilateral constraint of the domain,
defined as: hss(q) := pznsf (q) ≥ 0.

Accordingly, a transition from double-support to single-
support domain takes place when the normal force on non-
stance foot reaches zero, and a transition from single-support
to double-support domain occurs when the non-stance foot
strikes the ground, i.e.,

Hds→ss(q, q̇, u) := λfznsf (q, q̇, u), (46)

Hss→ds(q, q̇, u) := pznsf (q). (47)

No impact or coordinate change occurs when transition-
ing from a double-support to single-support domain, i.e.,
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(a) flat-footed outputs (b) Heel-toe outputs

Fig. 9: Illustration of outputs associated with pitch angles.

∆ds→ss = I where I is an identity matrix. On the other hand,
the reset map, ∆ss→ds, needs to incorporate the impact of the
non-stance foot strikes and the change of coordinates caused
by switching of the stance leg.

Virtual Constraints. The choice of virtual constraints is
inspired by authors’ previous work on human-inspired bipedal
locomotion [43]. Different from [43], we use 4th-order Bézier
polynomials as desired outputs. Considering that the robot has
actuated ankle and knee joints, we pick the linearized hip
position given by

δphip(q)=Laθra + (La + Lc)θrk + (La + Lc + Lt)θrh (48)

as the velocity-modulating output for both the double-support
and single-support domains, where La, Lc, and Lt are the
length of ankle, calf, and thigh link of the robot, respectively.

In addition, we pick following position-modulating outputs
for the double-support domain:
• stance knee pitch: ya2,skp = θrk,
• stance torso pitch: ya2,stp = −θra − θrk − θrh,
• stance ankle roll: ya2,sar = φra,
• stance torso roll: ya2,str = −φra − φrh,
• stance hip yaw: ya2,shy = ψrh.
• waist roll: ya2,wr = φw,
• waist pitch: ya2,wp = θw,
• waist yaw: ya2,wy = ψw,
• non-stance knee pitch: ya2,nskp = θlk,

yielding Ods = {skp, stp, sar, str, shy,wr,wp,wy,nskp}.
Due to the holonomic constraints imposed on the non-stance
foot, non-stance leg joints should not be controlled via virtual
constraints. Otherwise, the system will be over-constrained.
An exception is the non-stance knee pitch angle due to the
fact that the passive spring introduces one additional degree
of freedom in the non-stance leg.

For the single-support domain, we define five outputs in
addition to the outputs listed above, considering the fact that
the non-stance foot is no longer constrained in contact with
the ground. These outputs are:
• non-stance slope:

ya2,nsl = −θra − θrk − θrh +
Lc

Lc + Lt
θlk + θlh,

• non-stance leg roll: ya2,nslr = φrh − φlh,
• non-stance foot roll: ya2,nsfr = pznsf I(q)− pznsfO(q),

• non-stance foot pitch: ya2,nsfp = pznst(q)− pznsh(q),

• non-stance foot yaw: ya2,nsfy = pynst(q)− p
y
nsh(q).

See Fig. 9a for the illustration of some outputs defined
above. Consequently, we have the output indexing set Oss =
Ods ∪ {nsl,nslr,nsfr,nsfp,nsfy}. The last three outputs are
nonlinear outputs equivalently representing the orientations of
the non-stance foot. The locations of points nst, nsh, nsf I,
and nsfO are shown in Fig. 8. These outputs were chosen
over Euler angles in order to avoid expressions which contain
inverse trigonometric functions. To guarantee that the non-
stance foot remains flat, the desired outputs associated with
these three outputs should be zero.

Gait Generation. We apply the direct collocation based HZD
optimization framework in Section IV to design efficient and
dynamic walking gaits for this hybrid system model. The
number of cardinal nodes is chosen as 10 and 20 for the
double-support and single-support domain, respectively. To
achieve efficient walking, we set the objective function to
minimize the mechanical cost of transport of the walking gait.
Hence, the running cost of the problem is defined as

L(q̇, u, η̄v) :=
1

mgd(η̄v)
‖Pv(q̇, u)‖ (49)

where mg is the robot weight, d(η̄v) is the distance traveled
during a gait which could be determined from the desired holo-
nomic constraints, and Pv(q̇, u) is the total power consumed
assuming no power-regeneration (see [59]). In practice, we
enforce additional physical constraints to achieve sustainable
3D flat-footed walking gaits based on observations of the
actual implementation on physical hardware.

Restricting torso movement. The robot tends to fall more
easily when the upper body wobbles. This can be prevented
by constraining the torso movement in the gait design. With
φtor(q) : Q → SO(3) being the orientation of the upper torso
link, we restrict this orientation within a small range specified
by [φmin

tor , φ
max
tor ], i.e.,

φmin
tor ≤ φtor(q) ≤ φmax

tor . (50)

Constraining impact velocities. It becomes apparent through
testing that the swing foot impacting too hard on the
ground will destabilize the robot’s balance. Hence, we enforce
that the Cartesian velocities of the swing foot at impact
ḣnsf (q(Nss), q̇(Nss)) must be restricted within the region de-
fined by {vmin, vmax}:

vmin ≤ ḣnsf (q(Nss), q̇(Nss)) ≤ vmax. (51)

Avoiding swing leg collision. Due to the existence of compli-
ance in the mechanical system, the swing leg will hit the stance
leg if they are not separated enough. The separation of legs
can be expressed as the difference between stance and swing
hip roll angles. Therefore, during the single-support domain,
the non-stance leg roll output is constrained as

φmin ≤ ya2,nslr(q) ≤ φmax, (52)
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TABLE I: The boundary values for physical constraints.

Constraint Minimum Maximum

torso [−0.2,−0.1,−0.1] [0.2, 0.4, 0.1]
impact velocity [−0.1,−0.1,−0.25] [0.3, 0.1, 0]
leg separation angle −0.1 0

where φmax > φmin ≥ 0 are the maximum and minimum
allowable separation angles.

The minimum and maximum values for the above physical
constraints are chosen heuristically based on observing the
behavior of actual robot during experiments. The final values
used in this paper are listed in Table I. The total number
of optimization variables and constraints are 8974 and 9893,
respectively, with the sparsity of the constraints Jacobian
matrix being 0.13%. The performance of the gait optimization
and the simulation and experimental validations of an optimal
HZD gait will be discussed in Section VI.

C. 2D Heel-Toe Walking

In this paper, we use the term “2D walking” to indicate
that the behavior of the robot is restricted to the sagittal plane
only. It is important to point out that we still use the full-order
3D model of DURUS in this application despite the motion
being planar. The planar motion is realized by connecting
a supporting boom to the torso via a prismatic joint. This
linear boom is designed to freely slide along a straight gantry
mounted on the ceiling, allowing the robot to move in the
sagittal plane only. The prismatic joint connection between the
torso and the boom introduces a three dimensional holonomic
constraint. Let ts being the point at the connecting joint, these
constraints are pyts, φ

x
ts, and φzts. The inertial effect of the boom

mass on the system dynamics is modeled by adding the kinetic
energy to the system Lagrangian as in [60].

Hybrid System Model. Different from the flat-footed walking,
2D heel-toe walking allows the feet to rotate about their toes or
heels, resulting in heel- or toe-only contacts with the ground.
This walking closely emulates normal human walking pattern
that we discussed in Example 1. This hybrid system model
has four domains in total: a toe-strike domain, Dts, a toe-lift
domain, Dtl, a heel-lift domain, Dhl, and a heel-strike domain,
Dhs, as illustrated in Fig. 2. We assume that a walking gait
cycle starts from the toe-strike domain, and ends at the heel-
strike domain. Based on the contact conditions, we specify the
holonomic constraints for each domain as:

ηts(q) := (pyts, φ
x
ts, φ

z
ts, pst, φsf , pnst, φ

x
nsf , φ

z
nsf ) ∈ R14,

ηtl(q) := (pyts, φ
x
ts, φ

z
ts, pst, φsf ) ∈ R9,

ηhl(q) := (pyts, φ
x
ts, φ

z
ts, pst, φ

x
sf , φ

z
sf ) ∈ R8,

ηhs(q) := (pyts, φ
x
ts, φ

z
ts, pst, φ

x
sf , φ

z
sf , pnsh, φ

x
nsf , φ

z
nsf ) ∈ R13,

where st, nst, and nsh are the position of the stance toe,
the non-stance toe, and the non-stance heel, respectively (see
Fig. 8). The contact wrench constraints are similar to the flat-
footed walking case with an exception that the zero moment
point constraints are no longer required due to the supporting

boom. The unilateral constraints are determined so that toe or
heel position of the foot should be above the ground, i.e.,

hts(q) := (pznsh) , htl(q) := (pznsh, p
z
nst) ,

hhl(q) := (pzsh, p
z
nsh, p

z
nst) , hhs(q) := (pzsh, p

z
nst) .

Correspondingly, the guard conditions are defined as,

Hts→tl(q, q̇, u) := λfznst(q, q̇, u),

Htl→hl(q, q̇, u) := λfzsh(q, q̇, u),

Hhl→hs(q, q̇, u) := pznsh(q),

Hhs→ts(q, q̇, u) := pznst(q).

There is no impact or coordinate change involved with the
toe-lift and the heel-lift event, therefore, the associated reset
map is an identity map for these two transitions. The other two
events involve an impact, and among them the toe-strike event
requires coordinate change, or relabeling, due to the switching
of the stance and the non-stance foot.
Virtual Constraints. Outputs for each domain are selected
from the outputs that we have defined for the flat-footed
walking plus two new outputs, namely (see Fig. 9b):
• stance ankle pitch: ya2,sap = θra,
• non-stance ankle pitch: ya2,nsap = θla.
We determine the position-modulating outputs of each do-

main in terms of the following output indexing sets:

Ots = {skp, stp,wr,wp,wy,nskp} ,
Otl = Ots ∪ {nsl,nsap,nslr,nsfr,nsfy} ,
Ohl = Ots ∪ {sap,nsl,nsap,nslr,nsfr,nsfy} ,
Ohs = Ots ∪ {sap,nsap} .

For domains Dts and Dtl, we define the same velocity-
modulating output as stated in (48). Because the non-flat
stance foot will make it difficult (sometimes impossible) to
directly control the forward speed of the hip, there is no
velocity-modulating output defined on Dhl and Dhs.
Gait Generation. Dynamic and energy efficient 2D heel-toe
walking gaits will be generated using the same procedures as
the 3D flat-footed walking. Specifically, we pick the number
of cardinal nodes as 10, 15, 20, and 12 for the toe-strike, toe-
lift, heel-strike, and toe-strike domain, respectively. To achieve
a planar motion also with the other parts of the body, we
particularly require the desired outputs that are associated with
roll and yaw angles to be zero. These outputs include ya2,wr,
ya2,wy, ya2,nslr, y

a
2,nsfr, and ya2,nsfy. This requirement can be

achieved by setting the upper and lower bound of parameter
sets αo associated with these outputs to zero. Also, the impact
velocity constraint in (51) is now imposed on heel-strike
and toe-strike, respectively. Considering this heel-toe walking
behavior has four domains, the total number of optimization
variables and constraints is 21309 and 22721, respectively.

VI. EXPERIMENTAL RESULTS

In this section, we present simulation and experimental re-
sults of two types of walking gaits on DURUS generated from
the proposed HZD optimization method. The performance of
this method under different conditions is also evaluated and
discussed.
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A. Setup

The HZD gait optimization problem is solved by
IPOPT [61] interfaced with MATLAB on a laptop computer
with an Intel Core i7-6820HQ processor (2.7 GHz x 8) and 8
GB of RAM. In addition, we use the linear solver ma57 for
IPOPT. Optimal gaits generated from the optimization are
then implemented on the DURUS hardware. For more details,
we refer the readers to [33].

During the experiments, the robot walked on a 5′×8′ tread-
mill platform. The speed of the treadmill was automatically
controlled to match the walking speed of the robot. For 2D
restricted walking, the top of the robot torso was pinned to a
specially designed boom supported by a straight gantry parallel
to the treadmill. The boom allows the robot to freely move
up and down, forward and backward, and to rotate about the
y−axis, but restricts its motion to the sagittal plane only. For
the 3D humanoid walking gait, there was no supporting boom
attached, rather a safety catch rope was tied to the robot and
ceiling. The rope is loose enough not to support the robot as
it walks, but catches before the robot hits the ground in case
of a fall.

B. 3D Flat-Footed Walking

In this subsection, we present the simulation and experi-
mental results of one of many stable periodic gaits obtained
from the optimization. The step length of this particular gait
is 0.13 m and the step width is 0.24 m. The total elapsed
time of one complete gait step is 0.48 seconds. The desired
linearized hip velocity is 0.3 m/s for this gait.
Simulation Results. To demonstrate the convergence of ac-
tual outputs to given desired trajectories under the feedback
controllers, we simulate the system starting from a disturbed
rest position. This initial condition is determined by slightly
disturbing the fixed point of the original periodic orbit on the
Poincaré section, and set all joint velocities to be zero. The
feedback controllers drive the system to periodic limit cycles
even starting from a point that is not on the orbit. This is
demonstrated in Fig. 10, where we show phase portrait plots
of four representative joints. As shown in these figures, both
uncontrolled states (stance spring) and controlled states (waist
pitch, stance knee pitch, and non-stance hip roll) converge
to periodic limit cycles under the feedback controllers. The
maximum magnitude of the eigenvalues of the Jacobian of
the Poincaré return map is 0.24, which further indicates that
the gait is stable.
Experimental Results. The 3D flat-footed gait walked stably
for hours on multiple occasions. The stable walking of DU-
RUS was showcased at the robot endurance test at the DARPA
Robotics Challenge finals, during which DURUS exhibited
sustained walking over large distances with a consistently low
cost of transport. Fig. 11 shows the periodic phase portraits
of each of the actuated joint angles in one of the experiments.
Particularly, we show the periodic limit cycles in terms of
left/right leg angles, rather than in stance and non-stance leg
angles. The comparison of the corresponding periodic orbit
in simulation is also plotted in the figure, which shows very
close match between experimental and simulation trajectories
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Fig. 10: Phase portraits of representative joints in the 3D flat-
footed walking simulation starting from the rest. The red 4
shows the initial point of the simulation. The dashed lines
represent the discrete jump in system states at the end of each
step. The domain transitions are represented by � and blue ◦,
respectively.

despite discrepancies between simulation and reality. These
periodic limit cycles, in turn, represent a cyclic behavior of
the robot, i.e., periodic walking gaits. We show tiled images
of one gait step of the stable 3D walking in experiment
and simulation in Fig. 12. This successful stable walking in
3D is a strong indicator of the practicality of the presented
optimization approach on humanoid robots. A video of this
3D flat-footed walking gait in simulation and experiment can
be found in the attached video and [62].

Remark 9. The passive springs of DURUS is only considered
in the gait optimization process in Section V-B to generate
dynamically compatible motion for the full-order model of
the robot, but not explicitly incorporated within the feedback
control in experiments due to the fact that our current choice
of outputs is independent of the vertical springs in this paper.
Moreover, due to the sufficient damping and the natural fre-
quency of the vertical springs, the actual operating frequency
of these virtual springs (typically around 2 Hz) is significantly
smaller than the resonant frequency of the springs. Hence, we
have not noticed any excessive resonant motion of the springs
induced from the motion and control in our experiments.

3D Walking Efficiency. DURUS uses an onboard battery pack
to supply power to all electrical components of the robot,
including the central control computer, motor drivers, and
controllers, motors and sensors. The specific cost of electrical
transport cet was calculated as in [63], where the total energy
consumed over the weight and distance traveled for step i as:

cet,i =
1

mgdi

∫ t−i

t+i

Pel, (53)

where Pel is total consumed electrical power and di is the x-
position traveled by the non-stance foot of the robot through
the duration of the ith step. In particular, Fig. 13 shows
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Fig. 11: Periodic limit cycles of actuated joints in experiment and overlaid on the simulated gait (units: rad and rad/s; symmetric
joints omitted for clarity).

Fig. 12: Tiled still images from the simulation and experiment
of DURUS flat-footed walking in 3D at 0.3m/s.
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Fig. 13: Electrical cost of transport (CoT) for a 3D flat-
footed walking experiment over 450 steps with a mean cost
of transport of 1.33.

measurements of the electrical cost of transport of 3D flat-
footed walking gait over 450 steps. Power data was computed
directly from current and voltage measured on the output of
the battery pack.

The average total transport cost was measured to be 1.33,
which demonstrates a significant improvement in humanoid
locomotion economy. Notable comparable examples include
ASIMO, which is estimated to have an electrical cost of
transport of 3.2 [64]. Notably, other non-humanoid bipeds
have been built specifically to demonstrate more efficient

locomotion, yielding transport costs under 0.2 [14]. By these
results, we demonstrate that gait economy can be advanced
in more-traditional 3D humanoid forms, at least in part as a
result of our scalable and energy-optimized gait generation.

In addition, the average electrical cost of transport accounts
for the power only consumed on actuation—excluding energy
consumption on other electrical components, such as control
computer and sensors—is 0.83. In comparison, the total me-
chanical cost of transport of the ideal robot model from our
optimization is 0.16. That is, we have observed a significant
increase in the power consumption in experiment due to the
efficiency of actuator and transmission as well as extra control
efforts of tracking the desired trajectories due to the model
mismatch between simulation and experiment.

C. 2D Heel-Toe Walking

A optimized gait from the heel-toe walking with the desired
velocity 0.35m/s and the step length 0.36m is shown in
Fig. 14 and Fig. 15. The maximum magnitude of the eigenval-
ues of the Jacobian of the Poincaré return map of this gait is
0.96, which indicates theoretical stability of the walking gait.
In particular, the phase plot of a representative joint angle
in both simulation and experiment shows the existence of
stable periodic orbits of the system. The stroboscopic figure
of simulated 2D heel-toe walking gaits shown in Fig. 14.
Compared to flat-footed walking, both feet are no longer flat
on the ground or in the air during the 2D heel-toe walking. The
most apparent benefit of the heel-toe walking is a longer step
length than its counterpart gaits, likely because the feet can
stretch further out in front by landing on the heel, exhibiting
more qualitatively human-like behaviors. The simulation and
experimental results of the 2D heel-toe walking gait can be
found in the attached video and [65].

D. Performance Evaluation of the Optimization method

Optimization Performance on DURUS. The run time and
convergence rate of the optimization greatly depends on a
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Fig. 14: The stroboscopic figure of the 2D heel-toe walking.
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Fig. 15: Experimental results of multi-contact heel-toe walking
with DURUS in 2D, showing phase plot of a representative
joint angle in both in simulation and experiment (units: rad
and rad/s). Four tiled images of DURUS near times of multi-
contact domain switches are shown in correspondence with
their location in the phase plot.

number of factors. These include the reachable set of the
optimization variables as determined by the boundary values
and constraints, and the initial guess used to seed the solution.
With more relaxed upper and lower limits of variables and
constraints, the optimization tends to converge more quickly.
However, some physical constraints must be enforced strictly
due to the hardware limitations. Hence, not every constraint
or variables can be relaxed. The initial guess seeded to the
optimizer also affects the convergence of the problem. The
optimization converges quickly to a solution if seeded with
a “better” initial guess, such as a solution from the previous
optimization. Table II shows partial statistical results of the
optimization of 3D flat-footed walking with DURUS using
different optimization parameters. There are two different
seeds: the first set of initial guesses is randomly picked and
the second set is obtained from a previous solution that
does not satisfy all NLP constraints. We also considered
three different boundary conditions for NLP constraints: a
“relaxed” condition indicates the reachable set of optimization
variables set to be large, for example, larger joint velocity,

TABLE II: Runtime and convergence test of the optimization.

Init. Guess Bound. Iteration Feasibility Runtime (s)

random
relaxed 856 2.24× 10−9 675.49
regular 1209 7.89× 10−13 911.48
restricted 2811 3.08× 10−9 2027.08

old gait
relaxed 193 4.91× 10−09 150.28
regular 357 3.68× 10−11 375.9
restricted 693 5.21× 10−13 620.03

TABLE III: Comparison results between the (local) direct
collocation optimization vs the single shooting optimization.

Method CPU time (s) Iteration Function calls

Single shooting (fmincon) 162.59 21 612
Direct collocation (fmincon) 5.17 23 55

Direct collocation (IPOPT) 1.60 47 59

higher actuator torques, and relaxed configuration limits, etc.;
a “regular” condition suggests that the boundaries of variables
are set to reasonable values, mostly set to slightly tighter limits
than what the hardware is capable of; a “restricted” condition
restricts the reachable set of the optimization variables within
a very small region so as to achieve walking gaits with certain
fixed behaviors, for instance maintaining a straight torso.

Our results showed that adjusting the initial guess and
relaxing the constraints can improve the convergence time of
the optimization. However, we note that even a completely
random initial guess subject to strict hardware constraints still
converges to a feasible solution successfully. This suggests that
creative seeding is a helpful but perhaps unnecessary measure
for solving such high-dimensional problems.

Comparison versus Existing HZD Optimization Ap-
proaches. Lastly, we compared the computational perfor-
mance of the proposed approach and existing HZD opti-
mization approaches using direct single shooting and multiple
shooting methods. Considering both shooting methods are not
capable of solving HZD optimization for high-dimensional
humanoids, we particularly used a 5-link planar biped used
in [49] for the single shooting optimization and 7-link spring-
leg planar biped in [55] for the multiple shooting optimization.
Specifically, the following tests are evaluated with MATLAB’s
fmincon NLP solver instead of IPOPT. Moreover, Consider-
ing that the shooting methods are not robust enough to handle
random initial guesses, we take the parameters from previous
results as the initial guess. The comparison results under the
same physical constraints and initial guesses are shown in
Table III and Table IV.

The results demonstrate that our proposed approach based
on direct collocation methods converges significantly faster
than the existing HZD gait optimization formulations using

TABLE IV: Comparison results between the (local) direct
collocation optimization vs the multiple shooting optimization.

Method CPU time (s) Iteration Function calls

Multiple shooting 5027.45 1155 1624687
Direct collocation (fmincon) 84.30 44 123

Direct collocation (IPOPT) 41.47 207 845
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shooting methods. The direct collocation method has approxi-
mately 30 to 100 times faster than the single shooting method
depends on which solver has been used, and is approximately
60 to 100 times faster than the multiple shooting method.
That is because using numerical finite difference methods
to compute the gradient information requires an extensive
amount of computing resources. It can also be observed from
the total number of function calls of different optimization
methods used. In our direct collocation formulation, the use
of the analytic Jacobian reduces the function calls significantly
compared to the numerical finite differentiation used for direct
shooting methods.

The direct collocation method also reduces the number of
iterations to a feasible solution compared to the direct multiple
shooting optimization, as shown in Table IV. It is due to the
relatively linear relationships between the constraints and NLP
variables in the direct collocation optimization. In principle,
the same result should be observed in the comparison versus
the single shooting optimization. However, the particular case
of the 5-link point feet planar model allows explicitly solving
the pre-impact states and the closed form solution of the two-
dimensional zero dynamics, which in turn benefit the overall
convergence of the single shooting optimization. Unfortu-
nately, the same approach cannot extend to high-dimensional
humanoid robots or highly underactuated systems. Besides,
using numerical finite difference methods to compute the gra-
dient information requires the extensive amount of computing
resources. As a result, the overall CPU time used in the single
shooting optimization is still comparatively more than the
collocation method. With that being said, even when the partial
zero dynamics can be computed in closed form as it appears in
many fully actuated humanoids [66], [67], the single shooting
optimization requires incredible amounts of computing time.
Interestingly, even though the number of iterations is, in fact,
greater when using IPOPT, yet still it uses the least amount
of wall time. This indicates the fact that IPOPT performs
better for large-scale sparse problems. For the 7-link spring-
leg planar robot as in [55], the closed-form solution of the
hybrid zero dynamics cannot be obtained explicitly. Therefore,
the numerical forward integration of zero dynamics must be
performed using explicit Runge-Kutta methods. As a result,
the number of iterations and functions calls is notably more
than that of the collocation method. Moreover, the multiple
shooting method tends to be significantly less reliable; the
number of iterations is far more than the direct collocation
optimization.

VII. CONCLUSION

We presented a generalized optimization framework for
synthesizing formally stable locomotion on underactuated
robots as complex as humanoids. This framework blends the
theoretical foundation of hybrid zero dynamics (HZD) with
direct collocation trajectory optimization technique. As a result
of this process, we formulate our gait design problem as a
nonlinear program that can be solved in under ten minutes with
standard algorithms on a laptop computer. Encouragingly, de-
spite the high-dimensionality of the 10,000-variable problem,

the optimization even converges with random initial guesses.
Further, this method optimizes the interactions of the full order
multibody dynamics of multi-domain humanoid hybrid system
models, without conforming motions to simpler more-tractable
dynamics.

Using the spring-legged humanoid platform, DURUS, this
method produced both flat-footed and heel-toe walking. By
optimizing for efficient locomotion, we achieved an average
cost of transport of 1.33, significantly lower than that reported
by other human-scale humanoid robots, such as ASIMO [64].
It is important to note that energy economy is a product of
many factors, including mechanics as well as control. While it
is difficult to determine that the control is necessarily respon-
sible for this reported economy, these results demonstrate that
the presented method was capable of controlling a machine
with underactuated features designed to facilitate efficiency
(such as soft prismatic ankle compliance). More pointedly, we
believe this is an indicator that the control works in concert
with DURUS’ energy-conscious underactuated features via
optimization, and not working with them via compensation
methods. These efficient and stable walking gaits were ex-
hibited in public at the DARPA Robotic Challenges finals,
where it competed against the Sandia National Labs robot,
STEPPR [68], in the Robot Endurance Test. Highlights of
DURUS walking at the DRC finals can be found at [69].
Recently, the proposed scalable HZD gait optimization method
has been extended to 3D multi-contact heel-toe walking to
achieve natural human-like locomotion on DURUS, and fur-
ther improved the energy efficiency [70], [71]. We believe
that these 3D walking results signal that HZD approaches
have overcome a significant technical hurdle, and are therefore
sufficiently equipped to tackle the complexity of humanoid
locomotion.
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