
Real-Time Safe Bipedal Robot Navigation using Linear Discrete Control
Barrier Functions

Chengyang Peng1†, Victor Paredes1†, Guillermo A. Castillo2 and Ayonga Hereid1

Abstract— Safe navigation in real-time is an essential task
for humanoid robots in real-world deployment. Since humanoid
robots are inherently underactuated thanks to unilateral ground
contacts, a path is considered safe if it is obstacle-free and re-
spects the robot’s physical limitations and underlying dynamics.
Existing approaches often decouple path planning from gait
control due to the significant computational challenge caused
by the full-order robot dynamics. In this work, we develop a
unified, safe path and gait planning framework that can be
evaluated online in real-time, allowing the robot to navigate
clustered environments while sustaining stable locomotion. Our
approach uses the popular Linear Inverted Pendulum (LIP)
model as a template model to represent walking dynamics. It
incorporates heading angles in the model to evaluate kinematic
constraints essential for physically feasible gaits properly. In
addition, we leverage discrete control barrier functions (DCBF)
for obstacle avoidance, ensuring that the subsequent foot
placement provides a safe navigation path within clustered en-
vironments. To guarantee real-time computation, we use a novel
approximation of the DCBF to produce linear DCBF (LDCBF)
constraints. We validate the proposed approach in simulation
using a Digit robot in randomly generated environments. The
results demonstrate that our approach can generate safe gaits
for a non-trivial humanoid robot to navigate environments with
randomly generated obstacles in real-time.

I. INTRODUCTION

Humanoid robots exhibit great dexterity and agility to
perform different locomotion activities [1]–[3]. They are ex-
pected to be deployed to real-life environments such as ware-
houses and assembly lines. Such clustered environments pose
the challenge of navigating around obstacles while main-
taining stable walking in real-time [4], [5]. Yet humanoid
robots are inherently underactuated due to their unilateral
ground contacts; thus, a strong coupling exists between path
planning and gait control. Their high-dimensional, nonlinear,
and hybrid dynamics further complicate real-time motion
planning. For fully actuated legged robots, one can decouple
the path planning problem from motion control by finding a
collision-free path without accounting for the robot dynamics
and motion control [6], [7]. Then, a feedback controller
aware of the robot dynamics can be developed to track the
provided path. However, under-actuated humanoids would
fall if the planned path did not account for the robot
dynamics. This coupling of planning and dynamics usually

This work was supported in part by the National Science Foundation
under grant FRR-21441568.

1Mechanical and Aerospace Engineering, The Ohio State Uni-
versity, Columbus, OH, USA. (peng.947, paredescauna.1,
hereid.1)@osu.edu.

2Electrical and Computer Engineering, The Ohio State University,
Columbus, OH, USA; castillomartinez.2@osu.edu

† These authors contributed equally.

Fig. 1. Safe navigation planning is tested in MuJoCo with the Digit
robot.

requires solving specific gait optimization problems based on
the robot’s full-order [8]–[10] or reduced-order model [3],
[11], [12]. However, using the full-order model for long-
horizon path planning requires significant computation time,
making them non-amenable for real-time online planning.

To mitigate the computational challenge, reduced-order
template models are often used to approximate the walking
dynamics of the robot and plan gaits with reduced computa-
tional burden [13]–[15]. A famous example of such template
models is the linear inverted pendulum (LIP) model [16]. In
particular, the LIP model represents the robot dynamics using
the center of mass (CoM) position and velocity and allows
the control of the CoM velocity at the end of the next step.
The LIP model provides a lower-dimensional representation
of the robot dynamics that can be used to plan a desired foot
placement that renders stable walking gaits.

In this work, we introduce a modified 3D-LIP model with
heading angles to use the LIP model for both path and
gait planning and enforce necessary kinematic constraints.
Including heading angles and turning rates allows for ex-
pressing kinematic constraints in the local coordinate frame
of the robot, appropriately addressing the different motion
constraints in sagittal and frontal planes, as well as left foot
stance and right foot stance, of walking robots. A model
predictive control based on the discrete-time step-to-step
dynamics of this 3D-LIP model, denoted as LIP-MPC, is pro-
posed to unify path and gait planning. In particular, our MPC
formulation uses discrete control barrier functions (DCBFs)
for safe obstacle avoidance. Control barrier functions have
been successfully applied to controlling legged robots and are
now widely used to ensure safety in path planning [17]–[20].

DCBF, particularly, is well-suited for the discrete-time step-
to-step dynamic model [21], [22]. However, many barrier
functions that describe obstacles are nonlinear, leading to
nonlinear constraints when foot placement is treated as the
decision variable. Hence, despite the 3D-LIP model being
linear, the nonlinearity in both kinematic and path constraints
hinders the real-time computation of the MPC problem.

To mitigate computational efficiency, this paper proposes
two key ingredients: pre-computing heading angles and ap-
proximated linear DCBFs. Preprocessing the turning rate for
each prediction step allows us to linearize the kinematic
constraints within the MPC. Additionally, we introduce a
novel linear discrete-time Control Barrier Function (LDCBF)
to establish linear, feasible obstacle avoidance constraints for
convex obstacles. These adjustments transform the optimiza-
tion problem into a linearly constrained quadratic program-
ming (QP) problem, significantly reducing computational
demands and enabling real-time, safety-critical navigation for
bipedal robots.

The rest of the paper is organized as follows: Sec-
tion II introduces the 3D-LIP model with heading angles
and presents the formulation of the LIP-MPC with linear
kinematic constraints for feasible gait planning. Section III
details the design of the obstacle avoidance constraints,
introducing the novel LDCBF expression. Section IV shows
the application of the proposed LIP-MPC in simulation,
showcasing the real-time safe navigation of the bipedal robot
Digit. We presented the results of two different turning rate
preprocessing strategies: global goal-oriented and subgoal-
oriented. Finally, Section V concludes the contributions,
limitations, and future work.

II. REAL-TIME GAIT PLANING WITH LIP-MPC
The full-order dynamics of bipedal robots are high-

dimensional, nonlinear, and hybrid, which poses significant
computational challenges for planning and control. In this
section, we introduce a three-dimensional linear inverted
pendulum (3D-LIP) model with heading angles, and for-
mulate a model predictive control formulation that uses the
step-to-step discrete dynamics for step planning. We propose
several novel measures to ensure kinematics and safety
constraints can be represented as linear constraints, thereby
allowing real-time gait generation in crowded environments.

A. 3D-LIP Model with Heading Angle
The LIP model assumes the robot keeps a constant center

of mass (CoM) height H during the walking step. The motion
of the robot along the x direction can be expressed as:

v̇x =
g

H
(px − fx), (1)

where (px, vx) are the CoM position and velocity in x-axis,
fx is the stance foot position, and g is the gravitational
acceleration. If we assume that each walking step takes a
fixed time T , the closed-form solution of the step-to-step
discrete dynamics can be written as:[

pxk+1

vxk+1

]
= Ad

[
pxk

vxk

]
+Bdfxk

, (2)

Fig. 2. Representation of state transition of the LIP model
in the global frame. The state xk in step k (shown in cyan)
evolves to the state xk+1 (shown in orange) when stepping
at point (fxk

, fyk
) and with a turning rate of ωk.

with

Ad :=

[
cosh(βT) sinh(βT)

β

β sinh(βT) cosh(βT)

]
,

Bd :=

[
1− cosh(βT)
−β sinh(βT)

]
,

(3)

where β =
√
g/H , and pxk

and vxk
represent the CoM

position and velocity at the beginning of k-th step.
The motion in the y-axis direction has the same expression

as the x-axis. In this work, we will also consider the heading
angle θ and its turning rate ω, which can be used to determine
the orientation of the local robot coordinates. This allows
kinematics constraints (e.g., body velocity, leg reachability,
etc.) to be expressed properly in our gait planning problem.
By defining the state x := [px, vx, py, vy, θ]

T ∈ X ⊂ R5

and the control variable u := [fx, fy, ω]
T ∈ U ⊂ R3, the

step-to-step dynamics of the 3D-LIP model can be written
as:

xk+1 = ALxk +BLuk, (4)

with:

AL :=

Ad 0 0
0 Ad 0
0 0 1

 , BL :=

Bd 0 0
0 Bd 0
0 0 T

 . (5)

We show in Fig. 2 the projection of the LIP states and
controls in the x− y plane during multiple steps.

B. Safe Gait Planning with Model Predictive Control

Our work uses the step-to-step 3D-LIP dynamics in (4)
to formulate a Model Predictive Control (MPC) problem to
compute optimal stepping positions for stable locomotion
and safe navigation. To be able to respond to the instan-
taneous states of the robot in real time, we compute the
next discrete states (i.e., the LIP states at the beginning of
a step) using the closed form solution of (1). Let us denote

Fig. 3. An illustration of the LIP-MPC formulation when
N = 3. The planner first estimates the state at the end of the
current step, x0, given the current instantaneous state, xcur,
and the stance foot position contained in ucur. The turning
rates in the subsequent steps are pre-computed, where the
stepping positions fk will be optimized by the LIP-MPC.

it as x0, which will serve as the starting point in the MPC
formulation. Thus, the LIP-MPC can be stated as:

J∗ = min
u0:N−1

N∑
k=1

q(xk) (6)

s.t xk ∈ X , k ∈ [1, N]

uk ∈ U , k ∈ [0, N − 1]

xk+1 = ALxk +BLuk, k ∈ [0, N − 1]

cl ≤ c(xk,uk) ≤ cu, k ∈ [0, N − 1]

where, X is the set of allowed states and U is the set of
admissible controls. q(xk) is the cost function, defined to
evaluate the distance of a sequence of predicted states from
the goal position (gx, gy). Minimizing this cost implies that
the robot moves towards the goal position. In particular, we
consider quadratic cost function, defined as:

q(xk) = (pxk
− gx)

2
+ (pyk

− gy)
2 ∀k ∈ [1, N]. (7)

The kinematics and path constraints will be captured in
c(xk,uk). These constraints are often nonlinear as they
must be evaluated in the local coordinate frame, which
hinders the real-time computation of (6). In the following
discussion, we introduce several novel measures to linearize
these constraints, thereby ensuring the optimization problem
in (6) can be solved in real-time.

C. Heading Angle Preprocessing
The nonlinearity in c(xk,uk) is often due to the inclusion

of the heading angle, θk. To linearize these constraints,
we propose to pre-compute the turning rates ω̄k,∀k ∈
[0, 1, ..., N − 1] to keep them fixed in the MPC calculation.
A straightforward and simple way is to calculate the target
heading angle as the direction from the current position
towards the goal position. The required turning rate ω̄k is
calculated by smoothly turning from the current heading to
the target heading angle in N steps. To avoid sharp turns, we
also impose a limit on the turning rate |ω̄k| ≤ 0.156π rad/s.
Fig. 3 shows the case when MPC prediction step N = 3,
and the fixed turning rates for all steps.

D. Linearized Safety Constraints

In addition to the obstacle avoidance constraints, which
will be presented in the next section, we enforce multiple
kinematics constraints to ensure that the optimized stepping
positions are physically feasible on the robot hardware. With
pre-computed heading angles, these constraints will become
linear inequality constraints, as discussed below.
Walking Velocities Since the 3D-LIP states in (4) are
expressed in the world coordinates, to properly limit the
walking velocities, we must compute the body velocities
in the robot’s local coordinates. In particular, the walking
velocity constraint can be expressed as:[

vxmin

vymin

]
≤

[
cos θk sin θk
− sin θk cos θk

] [
vxk+1

svvyk+1

]
≤

[
vxmax

vymax

]
(8)

∀k ∈ [0, N − 1], where, vxmin
, vxmax

, vymin
, vymax

are the
lower bounds and upper bounds of the robot longitudinal
and lateral velocities, respectively. sv is a sign function that
depends on which foot is the stance. If the right foot is
the stance, then sv = 1; otherwise, sv = −1. This allows
lateral velocity at the end of each step to be properly limited
to ensure that the foot lands on the opposite side, thereby
preventing potential leg crossing and collisions.
Leg Reachability. The swing foot reachability constraint is
used to prevent over-extension of the swing leg. Our previous
work [15] limits the Euclidean distance between the robot’s
center of mass (CoM) and the subsequent stepping position.
Despite being straightforward, it introduces nonlinearity in
the optimization. We reformulate the constraint to decompose
the Euclidean distance into longitudinal and lateral compo-
nents based on the local coordinate frame. This allows a
linear expression of the reachability constraint, given as:[

−lmax

−lmax

]
≤

[
cos θk sin θk
− sin θk cos θk

] [
pxk

pyk

]
≤

[
lmax

lmax

]
(9)

∀k ∈ [0, N − 1], where, lmax is the maximum reachable
distance of the swing foot in both directions on the ground.
Maneuverability Constraint. The maneuverability con-
straint provides a good safety strategy that decelerates the
robot’s walking speed while turning. It couples the turning
rate with longitudinal velocity, as shown below:[

cos θk sin θk
] [vxk

vyk

]
≤ vxmax

− α

π
|ωk|, (10)

where α is a positive coefficient that balances the turning
rate and walking velocity. In our work, we empirically set
α = 3.6 for the Digit robot.

III. OBSTACLE AVOIDANCE USING LDCBF
We enforce obstacle avoidance by incorporating Discrete

Control Barrier Functions (DCBF). We showed in our pre-
vious work that regular DCBFs produce nonlinear con-
straints [15], which are not amenable for real-time planning.
In this section, we propose a novel strategy to express the
obstacle avoidance constraint as linear DCBFs (LDCBF).

For the discrete states of the robot xk ∈ X ⊆ Rn, and
discrete control inputs uk ∈ U ⊆ Rm, if there is a continuous

and differentiable function h : Rn → R, the safety set C and
the safety boundary ∂C of the system may be defined as:

C = {xk ∈ X |h(xk) ≥ 0},
∂C = {xk ∈ X |h(xk) = 0}.

(11)

Then, h(·) is a discrete control barrier function (DCBF) if
there exists a class κ function satisfying 0 < γ(h(x)) ≤
h(x), and following conditions can be hold [21], [22]:

∀ xk ∈ C. ∃ uk s.t. △ h(xk,uk) ≥ −γ(h(xk)), (12)

where △h(xk,uk) := h(xk+1) − h(xk). In the discrete
domain, γ can be also a scalar that 0 < γ ≤ 1. So, a DCBF
constraint can be written as:

∃ uk s.t. h(xk+1) + (γ − 1)h(xk) ≥ 0. (13)

A. LDCBF for Path Planning

To avoid obstacles, we need to compare the position of the
robot against the location of the obstacles. For this purpose,
we use the vector x⃗ := [px, py] that represent a position on
the map. Moreover, the selector matrix Sx maps the 3D-LIP
states to the robot’s position via x⃗ = Sxx, with

Sx =

[
1 0 0 0 0
0 0 1 0 0

]
(14)

In general, for path planning, each obstacle can be repre-
sented by a function F (x⃗) = 0 as shown in Fig. 4. Typical
representations of this function involve circles and ellipses
due to their simpler mathematical form. This function can
be constructed such that F (x⃗) < 0 whenever x⃗ is inside the
obstacle, and F (x⃗) ≥ 0 otherwise. This fact shows that is
convenient to choose h(x) = F (x⃗) as a DCBF. Even if an
obstacle have a complex shape, it is possible to construct
a single h(x) as a nonlinear composition of other simpler
DCBF [23], [24]. However, as long as the DCBF function is
nonlinear, the DCBF constraint (13) will also be generally
non-linear, which is not amenable for real-time computation.

Given a robot position x⃗r(t) at an instant t, it is possible to
approximate the safe region with a LDCBF constraint with
a half-space provided by the hyperplane h(x) by finding the
point c⃗ that represents the closest point in F (x⃗) = 0 to x⃗r(t).
The half-space approximation (Fig. 4, c) is given by:

h(x) =
∇F (c⃗)T

||∇F (c⃗)||
(x⃗− c⃗) ≥ 0 (15)

where, ∇F (c⃗)T

||∇F (c⃗)|| represents the normal vector of F (x⃗) at x⃗ =
c⃗ that points outwards the obstacle.

Proposition. If F (x⃗) is convex, or we use a surrogate convex
function C(x⃗) that contains F (x⃗), as shown in Fig. 4 b), we
guarantee that the safe region given by (15) does not contain
any unsafe points corresponding to the obstacle.

Proof. Assume a differentiable function F (x⃗) : R2 → R. If
F (x⃗) is convex, i.e, for any two points x⃗ and y⃗ in the obstacle
contour, F (y⃗) ≥ F (x⃗)+∇F (x⃗)T (y⃗− x⃗), then since F (x⃗) =
F (y⃗) = 0 we get that 0 ≥ ∇F (x⃗)T (y⃗ − x⃗). Consequently,
for any point c⃗, we observe that the half-space given by

Fig. 4. a) A function F (x⃗) represents the outline of an
obstacle. The safe path corresponds to the condition F (x⃗) ≥
0, where x⃗ represents a position in the map. b) The first step
to linearize the DCBF condition is to generate the convex
function C(x⃗) that contains F (x⃗). c) We use this convex
function to consider the robot position x⃗r and find the half-
plane formed by the closest point c⃗ and its normal vector,
representing the linear approximation of the safe region.

Fig. 5. Left: The closest point c⃗ to the robot is a vertex of the
convex hull. Right: The closest point c⃗ lies within an edge
of the convex hull. In both cases, the unit normal vector is
calculated as the normalization of the line connecting the
closest point to the robot position.

h(x) = ∇F (c⃗)T

||∇F (c⃗)|| (x⃗ − c⃗) ≥ 0 does not cross the obstacle,
thus is a safe region.

Moreover, finding a continuous function F (x⃗) that rep-
resents an obstacle might not be practical. Instead, we can
quickly generate a convex polygon that contains the obstacle.
In the discontinuous case, the convexity also guarantees that
the resulting half-space does not contain any part of the
obstacle itself. The construction of the hyperplane can be
visualized in Fig. 5. The procedure consists of finding the
closest point c⃗ that lives in F (x⃗) = 0 and it is closest
to the robot position x⃗r(t) at time t. This closest point c⃗
can be either on an edge or be one of the vertices of the
convex polygon. The computation of the normal vector of
an edge is η = ∇F (c⃗)T

||∇F (c⃗)|| , however, for a vertex, we use

η = x⃗r(t)−c⃗
||x⃗r(t)−c⃗|| , as illustrated in Fig. 6. In either case, the

half-space is represented by:

h(x) = ηT (x⃗− c) ≥ 0. (16)

Proposition. Given a linear discrete model that represents
the motion of the robot from xk to xk+1 as in (4) and a
DCBF constraint of the form (13). It can be shown that
h(xk) = ηT (x⃗k − c⃗) can yield a LDCBF constraint if the
closest point c⃗ and the normal vector η are approximated as
constants for the next time-instant (k + 1).

Fig. 6. a) A general nonlinear F (x⃗) = 0 obstacle contour can
be approximated by a convex polygon with lines Li(x⃗) =
0 delimiting a convex hull. b) Each line produces a safe
half-space Li = {Li(x⃗) ≥ 0}. The union of these half-
spaces S(x⃗) produces the safe region for the robot. c) We
simplify S(x⃗) considering a unique hyperplane per obstacle
depending on the position of the robot x⃗r. We compute the
closest point to the robot position c⃗ and construct the LDCBF
as done in (16).

Fig. 7. Left: A robot starting in the lower left side of the
map will experience a safe region composed by the union of
half-spaces produced by each obstacle. Right: As the robot
moves, the safe region will be updated potentially allowing
the robot to reach a target position.

Proof. We show this by expanding the LDCBF constraint:

h(xk+1) + (γ − 1)h(xk) ≥ 0

ηTSxBLuk + ηTS(ALxk + (γ − 1)xk)− ηT γc⃗ ≥ 0,

where SxBL ̸= 0 and the constraint is linear in uk, it can
be implemented in a QP-based optimization in real-time.

In the case of multiple obstacles, we add one linear
constraint per obstacle, producing a safe region given by the
intersection of each respective half-space as in Fig. 7.

IV. SIMULATION RESULTS

This section presents simulation results that demonstrate
the effectiveness and performance of the proposed LIP-MPC
in navigating clustered environments.

A. Simulation Setup

To ensure the safe navigation of the robot, we implemented
a hierarchical structure where the LIP-MPC is responsible for
generating the next stepping position at 20 Hz update fre-
quency, and a low-level task space controller keeps the CoM
height constant, the torso upright and places the swing foot
at its desired location at 1 kHz update frequency. We utilized

the Agility Robotics’ Digit humanoid as our testing platform
in simulation. To assess the efficacy and performance of
our proposed method, we randomly generated several test
environments within the MuJoCo simulator, each featuring
eight polygon-shaped obstacles of varying sizes and shapes.
In these test scenarios, the starting position was set at [0, 0]
m, with the goal at [10, 10] m. The robot’s Center of Mass
(CoM) height was maintained at H = 1 m, the step duration
was set to T = 0.4 s, and the MPC prediction horizon was
defined as N = 3. Table I presents the selected values of
weights and limits used throughout all the tests in this paper.

TABLE I. The value of each control parameter used in the
simulation throughout this work.

Parameters Value
[vxmin

, vxmax
] [−0.1, 0.8] m/s

[vymin
, vymax

] [0.1, 0.4] m/s
lmax 0.1

√
3m

α 1.44
γ 0.3

B. Global Goal Oriented Planning

Our approach begins by determining the required turning
rate for each prediction step based on the global goal posi-
tion and then calculating the corresponding foot placement
through our linearized LIP-MPC. We tested this method in
two randomly generated environments. Fig. 8 illustrates the
active LDCBF and dynamically changing safety region from
the starting position to the goal in one test. The form and
number of LDCBF constraints adapt based on the robot’s
position. To minimize redundancy and overlap in constraint
effects, only obstacles within a 4-meter radius are considered
as active LDCBF constraints in our method.

The simulation results for both environments are shown
in Fig. 9. The linearized LIP-MPC successfully generated
stable stepping positions, guiding the robot safely to the goal
without falling. Since the target heading angle is computed
so that the robot always faces the goal during walking,
the heading angle remains relatively constant during the
test, as shown in Fig. 9. This strategy reduces the robot’s
flexibility. When the obstacles are located in the robot’s
walking direction, this approach avoids obstacles in slow
sidewalking rather than with more agile forward walking
movements. While bipedal robots are omnidirectional, they
move faster and more stably in longitudinal than lateral
directions. In these two tests, the robot takes an average of
75 steps with nearly 31 seconds to reach the goal.

C. Sub-goals Oriented Planning

We enhance the navigation framework by introducing sub-
goals between the starting position and the final goal. This
allows for more flexible steering during the navigation to
the goal while preserving the linear form of the LDCBFs. In
particular, we employ the Rapidly-exploring Random Tree
(RRT) algorithm as a global planner to generate sub-goals

Fig. 8. Evolution of the active safe half-spaces during the robot motion using the safe MPC framework. The robot starts
at (0,0) m and moves toward the goal at (10,10) m. At any given time, only obstacles within 4 meters of the robot are
considered active and shown in yellow. The intersection of each corresponding half-space provides the safe region.

Fig. 9. The results of the global goal-oriented method in
two different cases. The First column shows the robot foot
displacements and CoM trajectories. The second column
shows the longitudinal and lateral velocity [m/s] change
over time [s] during the navigation. The third column shows
the heading angle changes [rad] over time [s].

that guide the linearized LIP-MPC. The resulting robot CoM
trajectories in the same two environments are shown in
Fig. 10. This allows the robot to walk more often in the
longitudinal direction, reaching the goal faster with 62 steps
in 26 seconds. Compared to the previous method, the sub-
goal-oriented approach produces a smoother trajectory with
a higher average forward velocity and requires fewer steps.

V. CONCLUSION

This paper presents a linearized LIP-MPC structure for
bipedal locomotion planning. The proposed method begins
by determining the turning rate of each step and then
obtains a foot placement sequence through a QP-based

Fig. 10. The results of the subgoals-oriented method in two
different cases. It shows a smoother path (the first column)
of the robot, and the longitudinal velocity can keep a high
velocity (the second column) compared to the global goal-
oriented approach. The third column illustrates the more
frequent changes in heading angle.

MPC. Moreover, we also introduce a novel LDCBF with
a linear structure applicable to convex obstacles. The results
demonstrate the reliability of our method for navigation in
various obstacle environments and the feasibility of realizing
real-time gait control of bipedal robots. We also discuss
the benefits of using a global planner to generate sub-goals
such that the robot can achieve more flexible navigation.
Despite its effectiveness, there is room for optimizing the
pre-computation of turning rates, to ensure safe and optimal
steering in clustered environments. Our future work will
focus on developing novel model-based and learning-based
approaches for optimal steering and hardware realization of
the proposed approaches in real-world experiments.

REFERENCES

[1] D. L. Wight, E. G. Kubica, and D. W. L. Wang, “Introduction of the
Foot Placement Estimator: A Dynamic Measure of Balance for Bipedal
Robotics,” Journal of Computational and Nonlinear Dynamics, vol. 3,
no. 1, p. 011009, 11 2007.

[2] A.-C. Hildebrandt, M. Klischat, D. Wahrmann, R. Wittmann,
F. Sygulla, P. Seiwald, D. Rixen, and T. Buschmann, “Real-time path
planning in unknown environments for bipedal robots,” IEEE Robotics
and Automation Letters, vol. 2, no. 4, pp. 1856–1863, 2017.

[3] J. Liu, M. Li, J.-K. Huang, and J. W. Grizzle, “Realtime safety control
for bipedal robots to avoid multiple obstacles via clf-cbf constraints,”
arXiv preprint arXiv:2301.01906, 2023.

[4] M. Wermelinger, P. Fankhauser, R. Diethelm, P. Krüsi, R. Siegwart,
and M. Hutter, “Navigation planning for legged robots in challenging
terrain,” in 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2016, pp. 1184–1189.

[5] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Per-
menter, T. Koolen, P. Marion, and R. Tedrake, “Optimization-based
locomotion planning, estimation, and control design for the atlas
humanoid robot,” Autonomous robots, vol. 40, pp. 429–455, 2016.

[6] N. Sleumer and N. Tschichold-Gürmann, “Exact cell decomposition
of arrangements used for path planning in robotics,” Technical Re-
port/ETH Zurich, Department of Computer Science, vol. 329, 1999.

[7] A. Gasparetto, P. Boscariol, A. Lanzutti, and R. Vidoni, “Path planning
and trajectory planning algorithms: A general overview,” Motion and
Operation Planning of Robotic Systems: Background and Practical
Approaches, pp. 3–27, 2015.

[8] H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning
with centroidal dynamics and full kinematics,” in 2014 IEEE-RAS
International Conference on Humanoid Robots. IEEE, 2014, pp.
295–302.

[9] M. Diehl, H. G. Bock, H. Diedam, and P.-B. Wieber, “Fast direct
multiple shooting algorithms for optimal robot control,” Fast motions
in biomechanics and robotics: optimization and feedback control, pp.
65–93, 2006.

[10] K. Mombaur, “Using optimization to create self-stable human-like
running,” Robotica, vol. 27, no. 3, pp. 321–330, 2009.

[11] P.-B. Wieber, “Trajectory free linear model predictive control for stable
walking in the presence of strong perturbations,” in 2006 6th IEEE-
RAS International Conference on Humanoid Robots. IEEE, 2006,
pp. 137–142.

[12] G. Garcı́a, R. Griffin, and J. Pratt, “Mpc-based locomotion control of
bipedal robots with line-feet contact using centroidal dynamics,” in
2020 IEEE-RAS 20th International Conference on Humanoid Robots
(Humanoids). IEEE, 2021, pp. 276–282.

[13] S. Teng, Y. Gong, J. W. Grizzle, and M. Ghaffari, “Toward safety-
aware informative motion planning for legged robots,” arXiv preprint
arXiv:2103.14252, 2021.

[14] R. J. Griffin and A. Leonessa, “Model predictive control for dynamic
footstep adjustment using the divergent component of motion,” in 2016
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2016, pp. 1763–1768.

[15] C. Peng, V. Paredes, and A. Hereid, “Unified path and gait planning
for safe bipedal robot navigation,” arXiv preprint arXiv:2403.17347,
2024.

[16] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The
3d linear inverted pendulum mode: A simple modeling for a biped
walking pattern generation,” in Proceedings 2001 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. Expanding
the Societal Role of Robotics in the the Next Millennium (Cat. No.
01CH37180), vol. 1. IEEE, 2001, pp. 239–246.

[17] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876,
2016.

[18] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in 2019 18th European control conference (ECC). IEEE, 2019, pp.
3420–3431.

[19] A. Manjunath and Q. Nguyen, “Safe and robust motion planning for
dynamic robotics via control barrier functions,” in 2021 60th IEEE
Conference on Decision and Control (CDC). IEEE, 2021, pp. 2122–
2128.

[20] C. Peng, O. Donca, G. Castillo, and A. Hereid, “Safe bipedal path
planning via control barrier functions for polynomial shape obstacles
estimated using logistic regression,” in 2023 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE, 2023, pp. 3649–
3655.

[21] A. Agrawal and K. Sreenath, “Discrete control barrier functions
for safety-critical control of discrete systems with application to
bipedal robot navigation.” in Robotics: Science and Systems, vol. 13.
Cambridge, MA, USA, 2017, pp. 1–10.

[22] J. Zeng, B. Zhang, and K. Sreenath, “Safety-critical model predictive
control with discrete-time control barrier function,” in 2021 American
Control Conference (ACC). IEEE, 2021, pp. 3882–3889.

[23] T. G. Molnar and A. D. Ames, “Composing control barrier functions
for complex safety specifications,” IEEE Control Systems Letters,
2023.

[24] J. Breeden and D. Panagou, “Compositions of multiple control barrier
functions under input constraints,” in 2023 American Control Confer-
ence (ACC). IEEE, 2023, pp. 3688–3695.

	Introduction
	Real-Time Gait Planing with LIP-MPC
	3D-LIP Model with Heading Angle
	Safe Gait Planning with Model Predictive Control
	Heading Angle Preprocessing
	Linearized Safety Constraints

	Obstacle Avoidance using LDCBF
	LDCBF for Path Planning

	Simulation Results
	Simulation Setup
	Global Goal Oriented Planning
	Sub-goals Oriented Planning

	Conclusion
	References

