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Abstract—This article studies the class of scenario-based safety
testing algorithms in the black-box safety testing configuration. For
algorithms sharing the same state–action set coverage with differ-
ent sampling distributions, it is commonly believed that prioritizing
the exploration of high-risk states and actions leads to a better sam-
pling efficiency. Our proposal disputes the above intuition by intro-
ducing an impossibility theorem that provably shows that all the
safety testing algorithms of the aforementioned difference perform
equally well with the same expected sampling efficiency. Moreover,
for testing algorithms covering different sets of states and actions,
the sampling efficiency criterion is no longer applicable as different
algorithms do not necessarily converge to the same termination
condition. We then propose a testing aggressiveness definition based
on the almost safe set concept along with an unbiased and efficient
algorithm that compares the aggressiveness between testing algo-
rithms. Empirical observations from the safety testing of bipedal
locomotion controllers and vehicle decision-making modules are
also presented to support the proposed theoretical implications and
methodologies.

Index Terms—Adversarial testing scenario, intelligent
transportation systems, legged robots, robot safety.
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s Testing system state.
S State space.
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U Testing action space.
U(s) State-dependent testing action space.
π Testing policy.
C Set of failure states.
u Testing action.
O Operational state space.
fs Discrete-time testing system dynamics.
Fs Function space of all possible fs.
σ(k) Scenario of k steps.
Rσ(s0, k) Run of a scenario initialized at s0.
R(s0) Rσ(s0, k) assuming all scenarios defined over the

same time domain.
T E Class of scenario-based safety evaluation algo-

rithms.
T Eπ T E with actions generated from a given π.
T Eu T E with open-loop state–action exploration

through sampling or brute force.
c Safety cost function for a run of a scenario.
T Termination function for T E .
G Target set of the cost function.
ū Sequence of (k) actions for a certain R(s0).
gm Sequence of safety costs obtained from m runs of

scenarios.
Nδ(s) (Extended) δ-neighborhood of s.
ΦO

δ Extended δ-covering set of O.
ΦO

s Set of centroids for ΦO
δ .

Φδ δ-covering set of an implicit O.
Φs Set of centroids for Φδ .
F̄s Subset of Fs.
δ Resolution coefficient for the δ-covering set.
ε Probability coefficient for the almost safe set.
β Desired confidence level coefficient for the almost

safe set.
π0 Subject vehicle control policy for the vehicle-

related testing applications.
π1 Lead vehicle control policy (i.e., the test-

ing policy) for the vehicle-related testing
applications.

w Disturbances and uncertainties.
W Set of disturbances and uncertainties.
k Number of states in a run of a scenario.
m Number of runs of scenarios.
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I. INTRODUCTION

AROBOT, such as an automated vehicle (AV) or a
humanoid, is designed to operate in complex real-world

functional domains interacting with other static and dynamic
domain users, including other human participants. To ensure that
this interaction is safe (for the robot itself, for the domain en-
vironment, and for other domain users), the safety performance
testing should be executed before, along with, and occasionally
after the life span of any robotic product. This safety testing
can serve various purposes, including falsification (identifying
failure events), defect analysis (identifying causes of failure
events), benchmark (safety performance comparison among var-
ious robots), certification, validation, and verification, to name
a few.

Across various safety testing purposes mentioned above, the
testing system is typically a composition of the subject robot
(SR) of unknown system dynamics and various behavioral
modules (e.g., the perception, localization, decision making,
and control modules) subject to a certain group of testing
actions and disturbances (e.g., the force one applies to the
humanoid’s torso or the driving behavior of other vehicles
against the subject AV). The state of the testing system, thus,
contains the typical dynamic states of the SR and various
features from other testing participants and the environment.
Note that the black-box nature of the testing system implies
that the state evolution supplied with a certain testing action
is primarily unknown and mostly arbitrary. This configuration
is particularly appreciated for safety regulatory, standardiza-
tion, and rule-making purposes, which are also the primary
applicable cases for the opinions and methods discussed in this
article.

Throughout this article, we primarily focus on the scenario-
based testing approach [1], which represents most, if not all,
of the safety testing methods. In particular, given a certain
testing system, a scenario-based safety testing algorithm re-
peatedly initiates runs of scenarios with each run specified by
an initialization condition assigned to the testing system (e.g.,
position and velocity of the SR and other testing participants)
along with a finite sequence of testing actions. The system state,
thus, evolves following the testing system dynamics with the
given testing actions. Note that the testing scenario is open loop
if the supplied testing actions are independent of the instanta-
neous state. Otherwise, one should expect a certain feedback
testing policy with state-dependent admissible testing action
space.

For each run of a scenario, the observed states are further
collected and analyzed by a given safety cost function (e.g., the
failure-or-nonfailure check, various time-to-collision-oriented
metrics [2], [3] for AVs, and other lagging safety measures [4],
[5]). The safety testing algorithm, thus, consecutively explores
scenario runs until a certain termination condition is met related
to the safety costs of all the explored runs of scenarios. The
termination condition is primarily determined by the safety
evaluation purpose, which can be of various forms. For example,
given the failure-or-nonfailure check as the single-run cost,
the falsification [1] algorithm terminates after encountering a

certain number of failure runs of scenarios, and the observed risk
metric [6], [7] terminates when the risk (the number of failure
scenario runs divided by the total number of runs of scenarios)
stabilizes with an acceptable tolerance of error.

The design of a scenario-based testing algorithm, thus, re-
quires specifying: 1) a state exploration strategy (i.e., how the
initialization conditions are determined); 2) an action explo-
ration strategy (through open-loop action sampling or a certain
feedback testing policy); 3) the safety cost for each scenario
run; and 4) the cost-dependent termination condition of the
algorithm. Algorithms are, thus, constructively different with
different designs of the above four components. As the safety
cost and termination condition are primarily related to the safety
testing purpose, this article focuses on variants of the first
two components, i.e., the state–action exploration mechanisms
(assuming the same but arbitrarily selected cost and termination
condition). This fundamentally covers most of the so-called
adversarial safety testing algorithms [8] that prioritize the ex-
ploration of critical states, hostile testing actions, and high-risk
testing policies based on data-driven learning [7], [9], [10], [11],
[12], [13], [14], [15], [16], [17], analytical modeling [18], [19],
and expert knowledge [20], [21], [22], [23], [24]. It is commonly
believed that an adversarial testing approach would accelerate
the testing process [6], [8], provide worst-case safety guarantee,
and enhance the robustness and resilience of the SR against
perturbations [25].

A. Problems and Challenges of Adversarial Testing

However, the claimed success of various accelerated and ad-
versarial scenario-based safety testing methods is mostly based
on intuitions and empirical observations. To the best of the
authors’ knowledge, the formal definition of aggressiveness (i.e.,
how adversarial the testing algorithm is) does not come with a
common agreement in the safety testing literature and varies
w.r.t. the construction of algorithms. Moreover, some of the
fundamental properties remain unclear. In general, this article
is centered around two major properties.

1) Comparability: For scenario-based safety testing algo-
rithms that are constructively different (at the state–action
exploration strategies), how to make a fair comparison and
claim one performs differently from another?

2) Optimal aggressiveness: In the case where the comparabil-
ity does exist, what criterion should one use to justify the
optimal testing algorithm and compare the testing aggres-
siveness? How do we provably and efficiently know that
one safety testing method is more aggressive/adversarial
than the other?

To formally study the above two performance properties, the
constructive differences among algorithms w.r.t. the state–action
exploration must be rigorously controlled. Two particular types
of differences are considered in this article. Type-I different
algorithms share the same state–action set with different sam-
pling distributions. The configuration is mostly applicable to
the open-loop scenario design and represents a large group of
adaptive/importance sampling based and some reinforcement
learning based testing methods [12], [15], [16], [26], as well
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as the expert-knowledge-inspired concrete testing scenario de-
sign [20], [22]. Note that all Type-I different algorithms are cov-
erage complete, i.e., as the number of explored runs of scenarios
tends to infinity, the probability of visiting all admissible states
and actions for each algorithm tends to 1. On the other hand,
Type-II different algorithms admit different feedback testing
policies for testing action derivation [7], [19], [27], which then
lead to different coverage of sets of states and actions. A more
formal definition of the above two types of algorithms can be
found in Section II-A.

For testing algorithms of Type-I difference, one intuitive
approach to justify the above two properties is through data
efficiency. The existing work mostly assumes that if the test-
ing algorithms are constructed differently (i.e., sampling states
and actions with different distributions or exploring states
and actions in brute force at different orders), then they also
perform differently in terms of the data efficiency. That is,
algorithms are different (comparable) at the number of runs
of scenarios each one takes to reach the same termination
condition (for an arbitrarily given cost and termination def-
inition) if the states and actions are explored following dif-
ferent sampling distributions. However, as we should address
in detail later in Section III, the aforementioned assumption
is not always correct, especially under the black-box testing
configuration. As a result of the nonexistence of the compa-
rability property, the optimal aggressiveness is not applicable
either.

Moreover, as one considers the class of testing algorithms
of Type-II difference, one directly validates the comparability
property (i.e., algorithms perform differently) given that the
state–action coverage among algorithms is diffident. However,
one can no longer rely on the aforementioned notion of sam-
pling efficiency to justify the optimal performance as testing
algorithms of different feedback testing policies do not neces-
sarily satisfy the same termination condition. For algorithms
of the above nature, existing methods tend to draw equivalent
correlations between the aggressiveness with the magnitude of
testing actions (e.g., high speed [28], large acceleration, and
jerk values [29] imply aggressive behavior of vehicles) and
the observed failure risk [7], [15]. This can be inaccurate and
unfair as the basic transitive property is not necessarily satisfied.
That is, a robot tested safe by the more adversarial testing
algorithm is not always safe against the less adversarial one
with the aggressiveness deemed by one of the aforementioned
equivalences. Some practical examples of this deficiency are
presented in Section V.

In general, existing studies of the above two classes of
scenario-based safety testing algorithms regarding the two ma-
jor properties (comparability and optimal aggressiveness) have
been primarily taking a data-driven approach with empirical
observations from testing a particular SR within a concrete
testing system. This article is inspired to rethink and reevaluate
the above testing algorithms in a more formal manner within
the black-box configuration. The main contributions are further
summarized w.r.t. the two major properties of interest separately
as follows.

B. Main Contributions

1) Comparability: We present, to the best of our knowledge,
the first impossibility theorem in the safety testing regime.
Through an adaptation of the No Free Lunch (NFL) theorem
from the optimization and machine learning regime [30], [31],
we formally prove that all the scenario-based testing algorithms
of Type-I difference perform equally well in terms of the ex-
pected sampling efficiency over any definition of safety cost
and termination condition in the black-box testing configuration.
This provides fundamental insights to some of the empirically
observed deficiencies in the adversarial learning regime [32] and
safety testing field [19], [33], where a seemingly adversarial
testing strategy for one robot does not necessarily hold the same
level of testing aggressiveness for another.

2) Optimal Aggressiveness: For testing algorithms of dif-
ferent feedback testing policies (i.e., Type-II difference), the
proposed impossibility theorem no longer applies. The com-
parability property is, thus, possible, and the algorithms per-
form differently. However, to fairly claim that one algorithm
is more adversarial than the other, one has to formally de-
fine the testing algorithm aggressiveness. Different from the
aforementioned techniques, we then propose a set-based metric
to fulfill the desired definition of optimal aggressiveness by
specifying: 1) the unbiased approximation of the particular
state(–action) set within which the SR is probably safe against
the given feedback testing policy and 2) the probability for
the claim to hold. The proposal is, intuitively and provably, a
better alternative than the aforementioned action-magnitude-
related and observed-risk-based aggressiveness measures. It
is an adaptation of the εδ-almost safe set method previously
proposed for the safety performance justification of AVs [34],
[35] and bipedal robots [36]. Finally, we also propose a
data-driven set-based methodology that formally compares the
testing algorithms efficiently by the proposed definition of
aggressiveness.

C. Construction

The overall construction of this article is as follows. Sec-
tion II-A reviews the basics of the scenario-based safety testing
algorithm and formulates the two types of constructively differ-
ent testing algorithms. The set-based safety evaluation approach
is reviewed in Section II-B. Section III addresses the compa-
rability property of Type-I different algorithms as mentioned
above. Section IV discusses the optimal aggressiveness property
w.r.t. Type-II different algorithms. In Section V, a series of
empirical observations is presented with safety testing appli-
cations with bipedal robot locomotion controllers and vehicle
decision-making modules. The observations support the various
theoretical insights discussed in Sections III and IV. Finally,
Section VI concludes this article.

1) Notation: The set of real and positive real numbers are
denoted by R and R>0, respectively. Z denotes the set of all
positive integers and ZN = {1, . . . , N}. |X| is the cardinality
of the set X , e.g., for a finite set D, |D| denotes the total number
of points in D. |x| can also denote the absolute value for some
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x ∈ Rn. [[i, j]] denotes the Kronecker delta function as

[[i, j]] =

{
1, if i = j

0, otherwise
. (1)

Some commonly adopted acronyms are also adopted includ-
ing i.i.d. (independent and identically distributed), w.r.t. (with
respect to), and w.l.o.g. (without loss of generality). One can
refer to the Nomenclature of other important notations used in
this article.

II. PRELIMINARIES

We first revisit the scenario-based test and formulate the class
of black-box safety testing algorithms. The set-based safety
metric is also reviewed in Section II-B.

A. Scenario-Based Test

A testing system involves an SR with a certain subject dynam-
ics controlled by a combination of various behavioral modules
along with other dynamic participants and environmental fac-
tors. A testing operator controls the controllable inputs such
as the environmental disturbances (e.g., external forces) and
the behavior of other testing participants (e.g., the behavior of
other traffic vehicles and pedestrian). Observed and extracted
states are then collected through a certain discrete-time data
acquisition system. This leads to the motion dynamics of the
following form:

s(t+ 1) = fs(s(t),u(t);ω(t)). (2)

The state s ∈ S ⊂ Rn and S denotes a finite but possibly large
set of states. The action u ∈ U represents the control inputs of
the testing system. U is, thus, the (finite) testing action space. It
is occasionally denoted as U(s) if the admissible testing action
set is state dependent on s ∈ S. ω ∈ W and W denotes the set
of environmental disturbances and uncertainties. The discrete
finite set assumption is a practically appropriate configuration
as practical testing execution and data acquisition are both with
digital equipment of finite-bit precision. Let Fs = SS×U×W

denote the space of all the possible dynamic transitions within
the specified state–action set (e.g., all the possible combinations
of mechanical designs of bipedal robots, perception algorithms,
decision-making strategies, and locomotion controllers). Each
fs ∈ Fs denotes a specific testing system with a set of fixed
choices of hyperparameters and configurations. In practice,
the same robots with different versions of the software stack
contribute to different fs (testing systems); robots of different
makes and models also lead to different fs. Differences among
the different fs are partially known by the designer and manu-
facturer of each individual robot, but are, in general, unknown
from the testing and evaluation perspective. This fundamentally
leads to the black-box nature of the safety testing, which admits
the following property.

Remark 1: In the black-box testing configuration, the testing
system dynamics fs ∈ Fs is unknown and arbitrary. Without
known prior of any system details, fs is uniformly distributed
in Fs.

Note that the above remark formally defines the intuitive
notion of “a robot can do anything” within the selected functional
domain. In the existing literature, Corso et al. [37] specify the
notion as “black-box techniques do not assume that the internals
of the system are known” and “they consider a general mapping
from input to output that can be sampled.” This conceptual
description clearly aligns with the proposed Remark 1.

Let O ⊆ S be a set of states that are of primary concern
for a certain functionality or work domain of the robot, re-
ferred to as its operational state space (OSS) [5]. The space
of all the black-box testing systems Fs then admits the form
as Fs = OO×U×W . Let C be a set of failure states such as
collisions and falling-over. Note that OSS and C are nonunique
in general (as a robot can be expected to achieve various desired
functionalities and experience different types of failure events).
One can refer to [5] for examples of OSS designs in the AV field
and [36] for OSS examples with bipedal and humanoid robots.
One other terminology closely related to OSS is the operational
design domain (ODD) [38] adopted to characterize the work
domain within which the SR is expected to be safe for the tested
functionality. The ODD is, thus, a subset of the OSS.

A scenario-based test of a certain SR in the testing system fs
using a sequence of testing actions, thus, collects and analyzes
a group of sampled trajectories that characterizes the evolution
of the state variables of system (2) within the OSS of concern.
Formally speaking, a scenario is a function of the form σ(k) :
Zk → O. Note that the state evolution within a scenario starts
and remains within the studied OSS unless a failure event occurs.
That is, if a test scenario reaches states outside the studied OSS
at a certain time t ∈ Z≥1, we consider σ(t+ t′) = σ(t− 1) for
all t′ ∈ Z until the trajectory gets back to O. Note that σ(t) /∈ O
does not necessarily indicate an unsafe outcome. It could also
represent the case where the failure concern is unnecessary as
one shall see later in the discussion related to Fig. 1. Such an
enforced condition is not a precise description of the motion
revealed by the testing system dynamics, but it copes well with
the limited data acquisition capability in practice, and it does not
affect the accuracy or the unbiasedness of the proposed safety
evaluation outcomes presented in this article. In practice, one
could also make O sufficiently large, but the testing efficiency
will be jeopardized with very little added value to the safety
performance testing tasks. Finally, if a test scenario indeed
encounters a failure state at a certain time t (i.e., σ(t) ∈ C),
we then have σ(t+ t′) ∈ C for all t′ ∈ Zk−t.

The sequence of actions that controls the evolution of states
within each scenario can be determined in two ways based
upon the state dependence. The open-loop approach explores all
actions u ∈ U following either a certain concrete order (brute
force) or a certain sampling distribution. The state-dependent
method typically admits a specific feedback testing policy π as

u = π(s). (3)

We then have a composed testing system dynamics of

s(t+ 1) = f(s(t);ω(t)) (4)

by replacingu in (2) with (3). In practice, such a concrete testing
policy can emulate the exact feedback testing strategy the SR
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Fig. 1. Example for some of the definitions introduced in Section II. (a) Standard lead-vehicle following testing system and its corresponding OSS design.
(b) Example of Type-I difference. (c) Example of Type-II difference w.r.t. T Eu. (d) Example of Type-II difference w.r.t. T Eπ . (e) Conceptual illustration of the
almost safe set.

is expected to encounter in the given domain (e.g., the real-
world statistical naturalistic driving policy against an AV as the
SR). The testing policy can also test the SR more aggressively
by prioritizing the high-risk actions dependent upon the given
states.

For a scenario-based test, the choice between exploring all
the actions in U in the open-loop fashion and following a
feedback policy π is primarily determined by the safety eval-
uation purpose. For complete falsification (finding some or all
states and actions that lead to failure events), the scenario-
based testing covering the complete state–action set is com-
monly adopted. On the other hand, some application require
the robot to operate in a specific functional domain against
a specific testing strategy, such as the AV operating against
human drivers and the humanoid walking in the crowd of
pedestrians. It is, thus, a natural decision to adopt a con-
crete testing policy that emulates the naturalistic driving pol-
icy or the crowd motion behavior. Other factors such as
the system dynamics nature and ethical concerns could also
affect the testing action propagation scheme, as we will see in
Section V.

Regardless of how testing actions are generated, a run of a
scenario, Rσ(s0, k), is defined as a sequence of acquired states
{σ(i)}i=1,...,k and σ(0) = s0. Note that given fixed s0 and k,
the run of a scenario is not necessarily unique with the presence
of disturbances and uncertainties in (2). W.l.o.g, let all scenarios
be defined over the same time domain. With a little abuse of
notation, Rσ(s0, k) is simplified as R(s0) for the rest of this
article. The testing action sequence associated with the run of a
scenario is also simplified as ū = {uj}j∈Zk

.
Let c : Sk → G be a cost function that takes a run of a scenario

R(s0) as the input. Note that g ∈ G denotes the object that
characterizes a certain safety property of the SR revealed through
a particular run of a scenario. Such an object can be as simple as a
Boolean value (e.g., the failure-or-nonfailure check as [[R(s0) ∩
C, ∅]]), but can also take complex forms such as the scenario run
itself. As the inputs are finite, the set G, while sometimes can be
quite large, is also finite. Moreover, the term sample is used to re-
fer to all inputs (e.g., s0 and testing action sequence) and outputs
(e.g., the collected states and the cost) related to a single run of a
scenario.

Consider m ∈ Z samples with a certain SR within the testing
system fs; let

gm =
[
c(R(s10)), . . . , c(R(sm0 ))

]
(5)

be the sequence of safety costs obtained from the aforementioned
m scenario runs.

A scenario-based safety testing algorithm is, thus, formulated
as

T E : Gm → S × Uk. (6)

That is, the algorithm consecutively determines how to collect
the next run of a scenario (i.e., the initialization state s0 and the
sequence of testing actions ū) based on the previously obtained
m costs. Note that some algorithms determine each scenario run
independently of the historical exploration, which can be viewed
as a special case of (6).

The termination condition of the algorithm takes various
forms such as if a certain safety cost (e.g., one failure run of
a scenario) or a particular group of costs have been collected.
W.l.o.g., consider the termination function T taking the instan-
taneous sequential costs gm as the input and the algorithm T E
always terminates if the obtained sequential costs gm satisfies
T (gm) = True.

In summary, the class of scenario-based safety testing al-
gorithms admits the basic form, as shown in Algorithms 1
and 2. In particular, T Eu denotes the class of safety testing
algorithms with open-loop testing scenarios that explore all the
initialization states and testing action trajectories in a coupled
space of S × Uk through a selected order or sampled sequence.
T Eπ chooses to follow a state-dependent way of testing action
derivation through a certain feedback testing policy π. In both
the algorithms, the testing system fs ∈ Fs is implicitly given as
a black-box.

Note that we assume that all the sampled runs of scenarios are
different, i.e., there does not exist any pair of runs of scenarios
sharing the identical combination of state trajectory, testing
action sequence, and safety cost. This is certainly feasible in
practice as one simply ignores identical outcomes, given that no
added safety information can be gained from the duplicated tests.
As a result, exploring all states and actions at different orders
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Algorithm 1: T Eu(gm).

1: Given: T (·), c(·), O ⊂ S, and U
2: Input: gm
3: While T (gm) = False:
4: Determine s0 ∈ O
5: Determine the testing action sequence ū ∈ Uk

6: Collect R(s0) with ū through fs (2)
7: gm.add(c(R(s0)))
8: m+ = 1
9: T Eu(gm)

Algorithm 2: T Eπ(gm).

1: Given: T (·), c(·), O ⊂ S, and π(·)
2: Input: gm
3: While T (gm) = False:
4: Determine s0 ∈ O
5: Collect R(s0) and ū with π(·) composed through (2)
6: gm.add(c(R(s0)))
7: m+ = 1
8: T Eπ(gm)

and sampling states and actions following different distributions
are essentially equivalent.

Finally, the general notion of “different safety testing al-
gorithms” can occur in various ways. Within this article, we
are primarily interested in two types of commonly observed
differences defined as follows.

Definition 1: Let T E1 and T E2 belong to the same subcat-
egory of T E (either T Eu or T Eπ). The two safety evaluation
algorithms are considered different for one of the following two
types.

1) Type I: T Eu
1 and T Eu

2 share the same configuration (i.e.,
the same state–action space, the same cost, and the same
termination condition) except for the different state–action
exploration order or different probability distributions of
states and actions over the same sample space.

2) Type II: T E1 and T E2 admit different sets of testing
actions U1(s) 
= U2(s) for some or all s ∈ O (or different
testing policies π1 
= π2) with all the other configurations
remain identical.

Note that the above algorithmic difference is defined w.r.t.
the construction of the algorithm. Whereas the comparability
and optimal aggressiveness, as we should address later in this
article, are concerned with the algorithms’ performance. In
general, the constructive difference does not necessarily imply
performance difference among algorithms. Moreover, safety
testing algorithms may also exhibit other types of differences or
a combination of the above two. One particular example is the
combination of the open-loop exploration of testing parameters
associated with a certain parameterized feedback testing policy.
This technically leads to Type-I difference as the feedback
testing policy can be viewed as part of fs, yet it also makes
the testing system not necessarily a black-box, as we should see

in Section V-A. More other variants are beyond the scope of this
article.

For all algorithms of Type-I difference, the same termination
condition is always achievable as the algorithm is coverage
complete (i.e., as the number of executed runs of scenarios tends
to infinity, the probability of encountering all the reachable runs
of scenarios tends to 1). However, given the same cost design and
termination condition, the number of runs of scenarios one takes
to reach the termination point varies as the explicit order in which
the states and actions are explored varies. Intuitively, a more
adversarial testing strategy is expected to take a smaller number
of samples for all the testing systems fs ∈ Fs. Hence, the
adversarial testing algorithm is equivalent with the accelerated
testing algorithm. To argue that the safety evaluation algorithms
of Type-I difference are comparable, it requires to show that
one algorithm can be faster than another in reaching a certain
termination condition in the black-box testing configuration
against all fs ∈ Fs. This inspires the comparability discussion
in Section III.

Moreover, algorithms of Type-II difference are not guaranteed
to share the same G supplied with the same cost function design
as they do not share the same coverage of actions or runs
of scenarios. The comparison among algorithms in this case
is essentially a comparison among different U (testing action
spaces) or π (feedback testing policies). One, thus, requires a
different methodology to define the optimal performance of an
adversarial safety testing algorithm. The following review of the
basics of the set-based safety metric will facilitate our proposal
regarding the optimal aggressiveness in Section IV.

B. Set-Based Safety Performance Characterization

The safety performance characterization metric, or simply a
safety metric, is typically adopted to justify the safety perfor-
mance of a given SR against a certain testing approach. Formally
speaking, consider a certain OSSO ⊂ S and fs ∈ Fs associated
with a certain SR, and a certain state-dependent testing action
setU(s) or a certain testing policy π. A safety metric follows the
primary task to characterize how the SR performs, in terms of
safety, against all the testing actions in U(s) at all states s ∈ O
or against the testing actions dictated by π in O. On the other
hand, one can also flip the side and use the same safety metric
to measure how various selections of feedback testing policies
perform against the same set of testing system dynamics. This
makes the following discussion useful for the testing algorithm
aggressiveness comparison as we will introduce later.

We start from the algorithm T Eπ with a certain testing policy
π as this is the relatively better studied form by the referred
literature. The definition of the ε-almost safe set [34] taking
consideration of the system randomness is presented as follows.

Definition 2: Given ε ∈ (0, 1], a set Φ ⊆ O. For any s0 ∈
Φ, the run of a scenario R(s0) is collected following a certain
testing policy π through fs ∈ Fs. Φ is the ε-almost safe set for
the system fs against π if Φ ∩ C = ∅ and

P ({s0 ∈ Φ : R(s0) \ Φ 
= ∅ }) ≤ ε. (7)
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That is, the robot is almost safe against π in O following fs
except for an arbitrarily small subset dictated by the probability
coefficient ε. Such an obtained ε-almost safe set and its various
characteristics (e.g., coverage, cardinality, and shape) are safety
performance features. The comparison among various SRs can
be further justified by comparing the obtained ε-almost safe
sets in O against the same testing policy. Note that the above
definition also fundamentally impliesΦ being a robustly forward
invariant set [39] for (4).

Moreover, the validation of the ε-almost safe set by Defini-
tion 2 requires consecutively observing a sufficient number of
runs of scenarios remaining inside the set, which is formally
justified through the following theorem adapted from [40].

Theorem 1: Given fs ∈ Fs, ε ∈ (0, 1], β ∈ (0, 1], Φ ⊆ O.
Consider N runs of scenarios, {R(si0)}i=1,...,N , with the state
initialization of each run being i.i.d. w.r.t. the underlying distri-
bution on Φ and the testing actions generated through the testing
policy π. The set Φ is the ε-almost safe set for the system fs
against π with confidence level at least 1− β if

N⋃
i=1

R(si0) ⊆ Φ,

N⋃
i=1

R(si0) ∩ C = ∅ (8)

and

N ≥ lnβ

ln (1− ε)
. (9)

The above theorem immediately leads to a safety evaluation
algorithm T Eπ admitting the same steps described in Algo-
rithm 2. Given the initial OSS O = Φ, the algorithm consecu-
tively samples runs of scenarios starting from s0 ∈ Φ and prop-
agates through fs against the testing policy π. The cost function
admits the aforementioned failure-or-nonfailure cost design. At
the mth iteration, if the executed run of scenario ends up in C,
the algorithm is terminated and the SR is unsafe in the given
set Φ. Otherwise, Φ is an εm-almost safe set with confidence
level at least 1− β and εm = 1− exp ( lnβ

m ) [a direct derivation
from (9)]. The algorithm then terminates with a sufficiently small
εm deemed by the testing operator.

In practice, as one rarely knows the appropriate candidate set
that is indeed the ε-almost safe set with a certain confidence level
justified by Theorem 1, the above validation commonly ends
up with a falsified outcome. The class of optimal safe domain
quantification algorithms is, thus, inspired to characterize the
largest subset of the initial OSS that is ε-almost safe. Given
an arbitrary candidate set of states, the optimal safe domain
quantification algorithm keeps exploring runs of scenarios, mod-
ifying the candidate set, until the exploration stabilizes with

lnβ
ln (1−ε) consecutive runs of scenario remaining in the largest
candidate set by Theorem 1 given ε and β.

Note that many of the set-based safety evaluation algorithms,
especially the class of quantification algorithms, can be compu-
tational inefficient due to the extremely large cardinality of O.
An immediate alternative is to characterize the ε-almost safe set
in a controlled less accurate manner without sacrificing the im-
partiality. One such example considered by previous work [40]

is through the extended δ-covering set defined as follows, which
is simplified as the δ-covering set throughout this article.

Definition 3: Given a certain set O ⊂ Rn, n ∈ Z, and δ ∈
Rn

>0, let Nδ(s) be the δ-neighborhood of s, i.e.,

∀s′ ∈ Nδ(s), |s− s′| ≤ δ. (10)

We claim that ΦO
δ is an δ-covering set of O if for some k ∈ Z

and si ∈ O, i = 1, . . . , k, we have

ΦO
δ =

⋃
i∈{1,...,k}

Nδ(si) ⊇ O and ΦO
s ={si}i∈{1,...,k} ⊆ O.

(11)
Furthermore, ΦO

s are centroids of ΦO
δ .

One can refer to [34, Fig. 2] for a special illustrative example
of the above definition on R2 with both entries of δ sharing
the same value. Note that the inequality in (10) is elementwise.
Moreover, the δ-covering set and the set of centroids are not
necessarily required to be affiliated with an explicit set to be
covered (i.e., O). The notions of Φδ and Φs are, thus, adopted.
They are primarily for cases where the δ-covering set is defined
over an implicit target O′ satisfying Φs ⊆ O′ ⊆ Φδ .

The main advantage of Definition 3 is that the set of centroids
ΦO

s forms a representative subset of O while ensuring uniform
coverage through the δ-neighborhood. Taking the validation
algorithm, for example, if incorporated with the ε-almost safe
set, one can simplify the process from exploring all s ∈ O to
a sufficient validation of runs of scenarios initialized from ΦO

s

and never leave ΦO
δ . This leads to a series of algorithms relying

on the so-called εδ-almost safe set [34] defined as follows.
Definition 4: Given an extended δ-covering set Φδ ⊂ S with

centroids Φs ⊂ Φδ , δ ∈ RN
≥0. Let ε ∈ (0, 1]. Φδ is the εδ-almost

safe set for the system fs against π if Φδ ∩ C = ∅ and

P ({s0 ∈ Φs : R(s0) \ Φδ 
= ∅ }) ≤ ε. (12)

Moreover, given

O = lim
δ→0

ΦO
δ = lim

δ→0
ΦO

s (13)

one ensures the resolution completeness property of any safe
domain validation and quantification algorithms incorporating
Definition 4. As δ tends to zero, one is guaranteed to validate
or recover the complete almost safe set. One can refer to the
previous literature and open-source code on more concrete
examples of existing safe domain validation and quantification
algorithms [34], [36], [40], [41].

We conclude this section by extending the ε-almost safe set
obtained for algorithm T Eπ against the testing policy π to T Eu

against the testing action space. Fundamentally speaking, the
robustly forward invariant set is further extended to the robustly
controlled forward invariant set [39], leading to the ε-almost
controlled safe set defined as follows.

Definition 5: Given ε ∈ (0, 1], a state set Φ ⊆ O, and the set
of admissible actions for each s ∈ Φ is denoted as U(s). Φ is
the ε-almost controlled safe set on U(s), ∀s ∈ Φ for the system
fs if Φ ∩ C = ∅ and

P ({s0 ∈ Φ, ū ∈ ∪i∈Zk
U(si) : R(s0) \ Φ 
= ∅ }) ≤ ε. (14)

One can also consider a special case of the above definition
with the state-invariant admissible action set U = U(s), ∀s ∈
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Φ. Theorem 1 remains valid for the ε-almost controlled safe
set validation with a minor difference on how each run of a
scenario is propagated. The corresponding safety quantification
algorithm also extends the exploration from the given OSS to the
combination of the OSS and the testing action space. Definition 5
can also be extended to the εδ-almost controlled safe set over
a certain δ-covering set of U(s) similar to the extension from
Definition 2 to Definition 4.

In Fig. 1, we present a conceptual example illustrating some of
the introduced definitions throughout this section. Consider the
testing system example shown in Fig. 1(a). One considers the SR
as an automated emergency brake (AEB) system [21] equipped
vehicle (in gray) and the testing system takes the longitudinal
control (i.e., acceleration) of the lead vehicle (in red) as the
testing action. The subscripts, 0 and 1, denote the SR follower
and the lead vehicle, respectively. As a result, the lead vehicle’s
control policyπ1 is essentially the testing policyπ for this testing
system. The OSS O (in blue) admits a 3-D design including
the distance headway (dhw) between the two vehicles and the
longitudinal velocities of the two vehicles. Note the dhw is upper
bounded by a finite value as a sufficiently large dhw contributes
very little value to the safety performance analysis in this exam-
ple and is also beyond the perception capability of the real-world
testing hardware. Other limits are set by the physical capabilities
of the vehicles. Other dynamic states (e.g., the acceleration of the
SR) and environmental conditions (e.g., road surface friction)
are examples of disturbances and uncertainties w in (2). A run
of a scenario, Rσ(s0, k) or simply R(s0), is thus a sequence of
points in the blue OSS O. The set of failure events C is shown in
red as the dhw is negative, which further implies a rear-end
collision between the two vehicles. In Fig. 1(b), two testing
algorithms covering the same set of testing actions with different
sampling distributions are of Type-I difference by Definition 1.
In Fig. 1(c), two testing algorithms covering different sets of
testing actions are of Type-II difference. Two testing algorithms
with different feedback policies are also of Type-II difference,
as shown in Fig. 1(d). Note that the upper one in Fig. 1(d) is the
exact testing policy of AEB system adopted by the EURO-NCAP
testing standard [22] (i.e., constant braking-to-stop at −6 m/s2).
The bottom figure in Fig. 1(d) indicates a neural-network-based
testing policy. In Fig. 1(e), a conceptual example of Φ ⊂ O (in
green) is illustrated. In particular, Φ could be: 1) almost safe by
Definition 2 if one composes one of the feedback testing policies
in Fig. 1(d) with (2), or 2) almost controlled safe w.r.t. one of
the sets of testing actions in Fig. 1(c) by Definition 5. Note that
in both the cases, the SR [the gray subject vehicle (SV)] is of
higher risk if the dhw is small and v0 � v1, which explains
the difference between Φ [the green set in Fig. 1(e)] and the
OSS O [the blue set in Fig. 1(a)]. One can refer to [34] and
[35] for more detailed safety analyses regarding this simplified
example.

III. COMPARABILITY OF SCENARIO-BASED SAFETY

TESTING ALGORITHMS

The main body of this article starts from a formal analysis
of the comparability of various scenario-based safety testing

algorithms. The main discovery can be summarized as 1) all
Type-I different scenario-based safety testing algorithms per-
form equally well in the black-box testing configuration, and 2)
the comparability is possible for the non-black-box configura-
tion or the algorithms of Type-II difference. Details are presented
as follows.

A. Impossibility Theorem for Scenario-Based Safety Testing

Let us start with a deterministic setup with W = ∅ for (2).
The omitted randomness brings extra notation complexity to the
analysis without significant impact to the theoretical results.

Recall the termination condition for algorithm T Eu; for two
algorithms to obtain the same sequence of costs gm such that
T (gm) = True, the more adversarial one should achieve the
sequence at a higher probability in expectation over the class
of all the testing systems. Let P(gm | fs,m, T Eu) denote the
probability of obtaining a particular aforementioned sequential
costs by iterating m runs of scenarios with T Eu against fs; we
have the following impossibility theorem for safety testing.

Theorem 2: Consider an arbitrary pair of scenario-based
safety testing algorithms in the form of Algorithm 1, T Eu

1 and
T Eu

2 , of Type-I difference by Definition 1∑
fs∈Fs

P(gm | fs,m,T Eu
1 ) =

∑
fs∈Fs

P(gm | fs,m,T Eu
2 ). (15)

One can refer to Appendix A for the complete proof of the
above theorem.

Intuitively, Theorem 2 suggests that under an absolute black-
box testing configuration by Remark 1, all scenario-based
testing algorithms of Type-I difference perform equally well.
Moreover, revealed by the proof in Appendix A, the expected
probability to obtain a particular run of a scenario over all testing
systems is also irrelevant of the choice of the testing algorithm
T Eu. That is, if a certain state is shown particularly critical
for a certain fs ∈ Fs, there must exist another testing system
within Fs against which the state is not as dangerous. Therefore,
the explicit exploration sequence of states and actions does not
matter, and all such algorithms share the same performance with
uniform random walk. Note that the black-box configuration by
Remark 1 is the essential key that contributes to the conclusion
by Theorem 2 as the uniformly distributed fs ∈ Fs ensures that
over the space of all the testing systems, all the states in O are
reachable from any state in O given a certain testing action in U
and a certain fs ∈ Fs. Hence, there does not exist a particularly
critical state or adversarial action as the criticality is dependent
upon fs.

The exact empirical proof of Theorem 2 is difficult to establish
in practice as the absolute class of black-box testing systems
is still rare to encounter. For the similar cause, existing exam-
ples with empirical success of various adaptive and importance
sampling-based testing algorithms are not counterexamples for
Theorem 2 either, as the testing system is never a black-box and
typically follows a specific function design.

However, as more complex robots are developed and deployed
in complicated working domains, the fundamental problem
formulation aligns closer with the underlying conditions that
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dictate Theorem 2 for safety testing; the impact of Theorem 2,
especially its implications to non-black-box but sufficiently
complex systems, has thus been subtly revealed in the field.

For example, the traditional testing scenarios adopted for
safety evaluation of various types of AVs has always been
following the same procedure involving: (i) studying the real-
world vehicle collision events from police reports and data logs;
(ii) accumulating experience and expert knowledge; and (iii)
directing the built-up expertise to design or reconstruct a testing
scenario library that prioritizes the exploration of high-risk states
and actions subject to vehicle dynamic limits, traffic rules, and
other constraints. The expert knowledge built up from step (ii)
has also been recently replaced with models and other unsu-
pervised learning techniques [42], [43]. The above procedure
has been working well for decades against simple AV function-
alities such as lane keeping and braking for rear-end collision
avoidance [20], [21] and is also making its way toward testing
more complex AV functionalities [44]. However, problems of
directly adapting statistically high-risk scenarios learned from
human drivers to an AV of high-level intelligence have also
been empirically discussed in the recent literature [19], [33],
including one titled “re-using concrete testing scenario generally
is a bad idea” [33]. It indeed is, as suggested by Theorem 2,
a set of high-risk scenarios for one SR does not necessarily
remain adversarial against another SR, even if the indicated
testing systems belong to the same class of functions. Note
that the above setup also fundamentally admits a regression test
methodology widely adopted in software testing [45], [46] and
many other industrial applications [47]. The observed problem
with AV applications generalizes to other domains as well.

Finally, for the nonempty Ws to involve in the black-box
testing, due to the black-box nature, one simply assumes a
uniform distribution of all the possible distributions over Ws

and the expected outcome involving ws over each possible
distribution. Thanks to the expected probability formulation
in (15), Theorem 2 should generalize to the stochastic system
with unknown disturbances and uncertainties by replacing the
specific gm with the expected gm over the aforementioned
distributions.

B. Toward the Possible Comparability

To make Theorem 2 invalid, one fundamental requirement
is to break the black-box setting. In practice, this is reflected
as analyzing only a finite subset of testing systems from the
complete function space Fs. This typically requires some model
insights and expert knowledge to establish the biased prior.
Whether the introduced prior is reasonable is problem specific
and occasionally beyond the scope of the engineering discipline.
Assume that one indeed confines the study to a non-black-box
configuration; for a certain gm, the equality of (15) can be
invalid between the pair of algorithms of Type-I difference. If
that particular gm also satisfies T (gm) = True, not only the
pair of algorithms are comparable, one is also better than the
other. This is essentially how existing adaptive sampling and
learning-based adversarial testing methods in the literature [7],
[15] are demonstrated empirically. For example, Li et al. [15]

empirically argue that the proposal is better than the adaptive
stress test (AST) [26] by showing that one forces the vehicle
equipped with the Apollo self-driving stack to a collision with
less number of sampled runs of scenarios than AST. The selec-
tion of a specific software stack, Apollo, makes the evaluation
non-black-box.

Another option to make Theorem 2 invalid is to extend the
difference through the selection of the testing action set U or
the testing policy π (i.e., switching from Type-I difference to
Type-II difference by Definition 1). Note that the inclusion of
different U or π leads to various biased coverage of proper
subsets ofG. One can no longer rely on the notion of the expected
probability of reaching the same gm to help claim one algorithm
being different from the other as the acquirable sets of costs for
different algorithms are different. Moreover, the fact that two
algorithms are different does not necessarily indicate that one is
better than the other. The formal notion of the relatively better
testing algorithm and the constructive solution to justify the
performance discrepancies among various testing approaches
are further addressed in the next section.

IV. TOWARD A PROVABLY MORE AGGRESSIVE

SCENARIO-BASED SAFETY TESTING ALGORITHM

In this section, we focus on safety testing algorithms of
Type-II difference. That is, the only difference between different
algorithms, by Definition 1, is the adopted testing action set
and policy. As we have clarified in the last section, although
the algorithms perform differently, one can no longer rely on
the notion of acquisition probability toward the same output to
justify the optimality comparison.

Recalling the discussion from Section II, the safety metric is
not only a performance characterization of the set of subject
policies or the testing system, but also a justification of the
testing action set and testing policy adopted by the algorithms.
For example, the SR tested relatively safe in the systemfs against
π is equivalent of saying the testing policy π is not sufficiently
aggressive to force the SR to exhibit unsafe behaviors or fs to
converge to risky outcomes.

The above idea has been extensively used with various safety
metrics justifying the testing methods’ aggressiveness such as
the magnitude of jerk values [29] and the observed risk (failure
rate) [15]. Intuitively, if a certain safety evaluation algorithm
T E1 is deemed more aggressive than another algorithm T E2

(assuming that they are of Type-II difference), one expects the
SR tested safe by T E1 to also be safe with T E2. This fundamen-
tally admits a transitive property. However, the aforementioned
metrics, as we should address theoretically later in this section
and empirically in Section V, can occasionally fail to satisfy the
transitive property.

A. Define Aggressiveness

One unique property of testing algorithms of Type-II differ-
ence is that they cover different subsets of states and actions.
It is, thus, a natural idea to use that subset, or a certain unique
part of that subset, to characterize the performance of a testing
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algorithm. This leads to the proposal of adopting a safe set per-
spective to help defining the aggressiveness comparison between
safety evaluation algorithms of Type-II difference, which can be
formally addressed by the following definitions.

Definition 6: LetΦi ⊂ O, i ∈ {1, 2}.Φi is the ε-almost (con-
trolled) safe set obtained from testing a certain SR in fs uni-
formly distributed in a set of testing systems F̄s ⊆ Fs against
the testing policy πi (or the testing action set U i). π1 (or U1) is
deemed ε-almost (controlled) more aggressive than π2 (or U2)
if

Φ1 ⊂ Φ2. (16)

Similarly,π1 (orU1) is ε-almost (controlled) less aggressive than
or equally aggressive with π2 (or U2) if Φ1 ⊃ Φ2 and Φ1 = Φ2,
respectively.

Definition 7: Let T E1 and T E2 be of Type-II difference by
Definition 1 (i.e., π1 
= π2 orU1 
= U2). The testing policy T E1

is deemed ε-almost (controlled) more aggressive than T E2 if π1

(or U1) is deemed ε-almost (controlled) more aggressive than
π2 (or U2) by Definition 6.

Note that the aggressiveness comparability defined above is
w.r.t. the different components between the two algorithms (i.e.,
different U , or different π).

It is immediate that the commonly used risk-based justi-
fication forms a necessary but insufficient condition for the
aggressiveness justification by Definition 7. That is, a more ag-
gressive testing policy by Definition 7 implies lower risk, but the
lower-risk policy does not necessarily indicate the proper subset
relation required by Definition 7 as it could also be the case
where the two almost-safe sets are different (i.e., Φ1 \ Φ2 
= ∅
and Φ2 \ Φ1 
= ∅). Moreover, the intuitive equivalence between
large action magnitude and high aggressiveness is also problem-
atic, as the cardinality of the almost safe set is not necessarily
monotonically related to the magnitudes of control actions. We
will see more examples for both of the above deficiencies later
in Section V.

Moreover, we argue that the ε-almost safe set justifies the test-
ing algorithm’s performance in a complete way that better aligns
with the intuitive expectation of aggressiveness. It is complete in
the sense that it casts the performance of a certain safety testing
algorithm over a multidimensional feature space characterizing
various set properties such as the cardinality, the coverage, and
the perimeter shape. The obtained outcome specifies not only
the risk (through ε) but also where in the testing state domain
the algorithm exhibits the risk in a provably unbiased manner.
T E1 is, thus, different from T E2 in various ways related to
the mentioned set features. It is also quite intuitive as the basic
transitive property is guaranteed by definition given that the
specific comparable aggressiveness only occurs under the strict
condition of (16). That is, if the SR is tested safe at every s
in Φ against T E1 deemed almost more aggressive, within a
controllable level of accuracy (through ε, β, and δ as we should
mention later), it is also safe at every s in Φ against T E2.

Taking advantage of the proposed Definition 7, some concrete
solutions that help making the formal aggressiveness compari-
son among algorithms are discussed next.

B. Formal Aggressiveness Comparison

The most intuitive approach to make the aggressiveness com-
parison between two safety evaluation algorithms, by Defini-
tion 7, is through deriving the ε-almost safe sets for both of
them with the same ε and other hyperparameters. However, the
advantage one considers an adversarial alternative in the first
place is to improve the testing efficiency. The accurate derivation
of the ε-almost safe sets for both algorithms fails that purpose.
Moreover, an algorithm might be redirected to various other
testing purposes and to work with different cost function designs
and termination conditions. The computational effort to justify
the aggressiveness should be kept at a practically acceptable
level.

One immediate alternative is to adopt one of the resolution-
complete algorithms such as the ones incorporating the δ-
covering set discussed in Section II and other literature [40].
The improved computational efficiency is achieved through the
tradeoff with the set accuracy in terms of the resolution and
probabilistic completeness.

However, even with the resolution relaxation, one still has to
fully quantify the εδ-almost (controlled) safe sets for both the
algorithms to justify the relative aggressiveness. In the rest of this
section, another formal aggressiveness justification algorithm is
proposed, which further improves the above alternative.

Intuitively, suppose that one has already quantified a certain
ε-almost safe set, Φ1, for T Eπ

1 , which is one of the two safety
evaluation algorithms to be compared of Type-II difference with
the confidence level of at least 1− β. Consider the claim of
“T Eπ

1 is ε-almost more aggressive than or equally aggressive
with T Eπ

2 ” and lnβ
ln (1−ε) sampled runs of scenarios initialized

from Φ1 but tested against T Eπ
2 . If all the sampled state tra-

jectories stay in Φ1, it is immediate that the claim is true by
Definition 7. If any run of a scenario ends up in C, then the
claim is false by Definition 4. One last possible outcome is that
some sampled runs of scenarios initialized in Φ1 reach outside
Φ1 but are not reaching C. It is, in general, difficult to justify
the property of the outreach part of states without sampling
runs of scenarios initialized from those states. However, if the
outreach part of states is only of low probability of occurrence,
one might not need to test those states anyway. This inspires
the following theorem that sheds light on an approach that
requires only a limited added runs of scenarios to validate the
aggressiveness comparison. The theorem is presented w.r.t.T Eπ

and the generalization to T Eu is straightforward.
Theorem 3: Given an OSS O ⊂ S and an ε-almost safe

ODD Φ1 ⊂ O with confidence level β ∈ (0, 1] and ε ∈ (0, 1] by
Definition 2 obtained with fs uniformly distributed in F̄s ⊂ Fs

and π1 from T Eπ
1 , let π2 from T Eπ

2 be a different testing
policy from π1. T Eπ

1 and T Eπ
2 are of Type-II difference by

Definition 1. Let pS(s) be the probability mass function of s in
S. Consider consecutively N runs of scenarios obtained from
testing the SR in the uniformly distributed systems in F̄s using
π2 with the state initialization being i.i.d. w.r.t. the underlying
distribution and {si}i∈ZN

⊂ Φ1. Let Φ′
1 = Φ ∪ {Rσ(si)}i∈ZN

.
With confidence level at least 1− β, the nominal testing policy
T Eπ

1 is ε-almost more aggressive than or equally aggressive with
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Algorithm 3: Comparing Aggressiveness BetweenT Eπ
1 and

T Eπ
2 .

1: Given: ε ∈ (0, 1], β ∈ (0, 1], δ ∈ Rn
≥0, O ⊂ S, C, two

different safety evaluation algorithms T Eπ
1 and T Eπ

2

admitting Type-II difference
2: (Φ1

δ ,Φ
1
s) = QNT T Eπ

1
(O, F̄s, ε, β, δ)

3: Initialize: AGG=False, N = 0,Φ2
δ = Φ1

δ ,Φ
2
s = Φ1

s

4: While N < lnβ
ln (1−ε) :

5: Get s0 ∈ Φ1
s, collect R = R(s0) with T Eπ

2

6: If R ∩ C 
= ∅
7: break
8: If R \ Φ2

δ 
= ∅
9: For s′ in R′ = R \ Φ2

δ do
10: If s′ /∈ Φ2

δ

11: Φ2
δ = Φ2

δ ∪ Nδ(s
′), Φ2

s = Φ2
s ∪ {s′}

12: If
∑

s∈Φ2
s\Φ1

s
pS(s)

∑
s∈Φ2

s
pS(s) < ε

13: AGG=True
14: Else
15: (Φ2

δ ,Φ
2
s) = QNT T Eπ

2
(O, F̄s, ε, β, δ)

16: If Φ2
δ ⊇ Φ1

δ

17: AGG=True
18: Output: AGG

T Eπ
2 by Definition 7 if

N ≥ lnβ

ln (1− ε)
(17a)

Φ1 ⊆ Φ′
1 ∩ C = ∅ (17b)∑

s∈Φ′
1\Φ1

pS(s)∑
s∈Φ′

1
pS(s)

< ε. (17c)

One can refer to Appendix B for the proof of the above
theorem. Note that Theorem 3 can be combined with the εδ-
almost safe set to form a provably unbiased and computationally
efficient aggressiveness comparison algorithm justifying if T Eπ

1

is more aggressive than or equally aggressive with T Eπ
2 at an

acceptable level of resolution accuracy dictated by the defined
δ. The details are presented in Algorithm 3 and can be easily
generalized to the case with T Eu. Let QNT T Eπ (O, F̄s, ε, β, δ)
be one of the εδ-almost safe set quantification algorithms [34],
[35], [40], [41] taking the testing policy from T Eπ against the
SR in fs uniformly distributed in a certain F̄s (one can refer to
Appendix C for more details).

Overall, Algorithm 3 starts from characterizing the εδ-almost
safe set using the testing policy from one of the algorithms to
be compared (line 2). W.l.o.g, let T Eπ

1 be the presumably more
aggressive one. We have the obtained δ-covering set Φ1

δ and the
centroids Φ1

s. Next, one starts the collection of at least lnβ
ln (1−ε)

sampled runs of scenarios with the initialization state being i.i.d.
w.r.t. the underlying distribution of Φ1

s obtained from the known
distribution over O (Φ1

s ⊂ O). The above step should end up
with one of four outcomes.

1) If one encounters a failure run of a scenario initialized
from Φ1

s following the testing algorithm T E2 at the N th
trial andN < lnβ

ln (1−ε) (line 6), neither the SR is sufficiently

safe inΦ1
δ against T E2 nor T E1 is almost more aggressive

than or equally aggressive with T E2 (as T E2 captures a
failure event that T E1 fails to capture within the same
level of effort). On the other hand, if the SR successfully
“survives” lnβ

ln (1−ε) runs of scenarios against T E2, we have
two other possible outcomes.

2) If the union of the runs of scenarios remain inside Φ1
δ

(i.e., lines 8–11 were never executed and Φ1
δ = Φ2

δ), T E1

is ε-almost more aggressive than T E2 by Definition 7
within the resolution accuracy level justified by δ (i.e.,
AGG=True).

3) Otherwise, the above aggressiveness comparison still re-
mains valid if Φ2

δ does not deviate too much from Φ1
δ with

the allowed deviation formally justified by (17c) using the
sets of centroids Φ1

s and Φ2
s (lines 12 and 13).

4) The last possible outcome is that Φ1
δ differs from Φ2

δ

significantly (lines 15–17); one, thus, relies on the for-
mal quantification (see Algorithm 4 in Appendix C) of
the εδ-almost safe set for T Eπ

2 to give the comparison
outcome.

This section is concluded with a remark emphasizing that
Algorithm 3, similar to the other safe set quantification vari-
ants [34], theoretically suffers from the curse of dimensional-
ity (CoD). Relaxing the resolution and probabilistic accuracy
through smaller δ, ε, andβ is a feasible fix of relieving the impact
of CoD in practice. This is also the method adopted throughout
Section V. One other practically efficient method is to initialize
Algorithm 3 with the OSS O being closer to the potential almost
safe set. Such non-black-box insights are typically achieved
through 1) expert knowledge and 2) model-specific understand-
ings of the system. Developing a more fundamentally effective
solution for the CoD challenge is of future interest, and it is out
of the scope of this article.

V. CASE STUDIES

The safety evaluation of two types of robots of different
mechanical nature and intended functionalities are presented in
this section. For the bipedal robot, Cassie, one studies the safety
property of stable locomotion control (not falling over) against
external disturbances. For the decision-making algorithms of
vehicles, one evaluates the collision avoidance capability against
other testing vehicles following different forms of testing strate-
gies.

We emphasize that the studied cases are not only to empiri-
cally demonstrate a particular algorithm (as Algorithm 3 is only
one of the several contributions presented in the previous two
sections). Also, as addressed in Section III, the empirical proof
of Theorem 2 is difficult to have. However, its implications will
still be observed from both the cases.

A. Case Study With Bipedal Locomotion Controllers of Cassie

The first case focuses on the class of dynamic locomotion
controllers of a 20-degree-of-freedom bipedal robot named
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Fig. 2. Cassie robot in real-world (left) and MuJoCo simulator (right) with
annotations of the transverse and sagittal domains studied by this article.

Cassie (see Fig. 2). Consider the class of locomotion controllers
that seeks to track a constant desired forward-walking velocity
of 0.4 m/s after the scenario run initialization. The robot
is expected to converge to the desired velocity from any
instantaneous velocity and any acceleration mode with stable
walking gaits without falling over (i.e., the physical contact
between the ground and any part of the SR other than
the two feet) against external forces applied to the center
of gravity (CG) of the robot’s torso. This leads to a 2-D
OSS design as S = Vc ×Qc with Vc = [−0.2, 0.8] ⊂ R and
Qc={deceleration,steady-state,acceleration},
which denote the set of step velocities and the set of step
acceleration modes, respectively. Owing to the mechanical
nature of Cassie, it is infeasible for the robot to precisely
maintain a certain walking speed. As a result, we define the
step velocity and acceleration as the filtered average velocity
and acceleration, which is a common setup in the field [36],
[48], [49]. The three discrete modes in Qc are further defined
based on the signs of the step acceleration value. Note that the
OSS design considers important state features that are crucial
to the desired function of interest. Some other states such as
the transverse velocity and the specific acceleration value are
considered as part of the disturbances and uncertainties assumed
to follow a certain unknown distribution. Moreover, w.l.o.g, we
assume that the state initialization uniformly distributes in the
defined OSS. One can replace this assumption with other types
of distributions if applicable.

Consider a periodic pushover testing policy of applying a
certain external force to the CG of the robot’s torso at 0.5 Hz.
The external force admits the testing action set of Fx × Fy with
the aforementioned external forces applied along the sagittal do-
main (Fx = {−40,−39, . . . , 40} N) and the transverse domain
(Fy = {−20,−19, . . . , 20} N).

Each run of a scenario first initializes the robot at the given
velocity v0 ∈ Vc (within a tolerance of ±0.1 m/s) and the given
acceleration mode (by heuristically configuring a sequence of
desired velocities to track). The test then proceeds with pe-
riodically applying and relieving the selected external force
fe ∈ Fx × Fy with equal time duration (1 s) at 0.5 Hz. We also
have the maximum time duration of a single scenario run as
10 s, and the data acquisition frequency is 10 Hz (i.e., k = 100).

Fig. 3. Some subspace slices of the εδ-almost controlled safe set obtained for
both RPPO and HZDES. Each subfigure is a δu-covering set (δu = [10, 10])
of the state-dependent admissible testing action set U(s) = Fx(s)× Fy(s)
on which the set of states (Vc ×Qc) forms an εδs-almost controlled safe set
(ε = 0.001, δs = [0.1, 1]) with confidence level at least 0.9999 (β = 0.0001).
The δu-covering sets for testing RPPO and HZD-ES are shown in green and
blue, respectively. Note that the three modes in Qc are processed as the integer
set Z3; hence, the selected δs[2] = 1 ensures the accurate coverage of all the
acceleration modes. For all the subfigures, the positive values indicate pushing
backward and toward the left of the SR.

The above testing procedure has been discussed in [36] w.r.t. a
similar application. Let falling-over be the only failure event of
concern that defines C. All the tests are performed in the MuJoCo
simulator [50], using the same environment configuration shared
by the developers of the SR’s locomotion controllers studied by
this article, as we will introduce later.

For the abovementioned desired locomotion function, we
adopt two different locomotion controllers for the SR including
one learned through recurrent neural network and proximal
policy gradient (RPPO) [49] and another policy derived using
hybrid zero dynamics inspired evolution strategies
(HZDES) [48], [51]. Both the policies have shown empirically
competitive performance in the intended functionality of stable
velocity tracking without falling-over. One can refer to [36] for
the safety performance comparison between the two controllers
with various OSS designs.

Note that both Type-I different and Type-II different testing
algorithms are implemented in this study. Type-I different algo-
rithms have the same admissible set of testing forcesFx × Fy , as
mentioned above. If the pushover testing policy is parameterized
on the selected force and the force is set without state dependence
before each run of a scenario, one can consider the testing policy
as part of the testing system fs. The studied algorithms are, thus,
fundamentally of Type-I difference. However, the black-box
configuration no longer applies with the pushover testing policy
involved, yet the implications of Theorem 2 are still available.
Moreover, if the two algorithms have different set of testing
forces, they become Type-II different algorithms by Definition 1.

1) Testing Cassie With Type-I Different Algorithms: We start
with an experiment that sheds light on Theorem 2. Fig. 3 shows
some of the subspace slices of the quantified εδ-almost con-
trolled safe sets comparing the RPPO policy against the HZDES.
With the same OSS and the same initial testing action space,
the two subject policies, RPPO and HZDES, exhibit significant
difference in handling various external forces at different states
(step velocities and acceleration modes). In particular, RPPO is

Authorized licensed use limited to: The Ohio State University. Downloaded on September 11,2023 at 00:57:09 UTC from IEEE Xplore.  Restrictions apply. 



WENG et al.: ON THE COMPARABILITY AND OPTIMAL AGGRESSIVENESS OF THE ADVERSARIAL SAFETY TESTING OF ROBOTS 3311

Fig. 4. (a) Two adopted state-invariant testing action sets and (b) the εδ-almost
controlled safe set for U1 against the subject policies, RPPO and HZDES, se-
lected with equal probability at each test run with ε = 0.001, β = 0.0001, δ =
[0.1, 1].

more vulnerable against external forces applied from the rear-left
side of the robot, especially at low forward-walking speeds and
walking backwards. That is, consider some safety evaluation al-
gorithms exploring the admissible action setFx × Fy at different
orders (i.e., Type-I difference) in searching for a certain amount
of unsafe states. It is immediate that the one that prioritizes
the search in the second quadrant of Fx × Fy is more efficient
against RPPO than with HZDES. On the other hand, the one that
prioritizes the search in the first quadrant of Fx × Fy makes an
efficient testing strategy for the HZDES.

In general, note that RPPO and HZDES are simply two
concrete examples from a large function space of unknown
locomotion controllers for Cassie, and Cassie is also a specific
example from a large space of legged robot dynamics. In the
black-box testing configuration where the legged robot could
exhibit all the possible behaviors with all kinds of mechanical
designs (e.g., the bipedal, the quadruped, and the humanoid
robot), the best testing sequence of states and actions does not
exist, which is proved by Theorem 2.

Intuitively, one might expect that the algorithm prioritizing
the search of high-magnitude forces is relatively efficient w.r.t.
a certain falsification purposed termination condition. This is
technically incorrect as the legged robot admits the mechanical
and controller designs that do not necessarily response linearly
w.r.t. the magnitude of the external force (e.g., producing lower
stiffness against smaller forces). It is an expected behavior of
a “reasonable” dynamical response, but assuming a particular
type of biased behavior is never a prior of any black-box testing
algorithm. In fact, as illustrated by the subfigure for the deceler-
ation mode of RPPO at 0.2 m/s (first row, third column) in Fig. 3,
given the zero sagittal force, the robot remains safe against the
20-N transverse force but falls over against the 10-N one. As
the two selected subject policies are among state of the art,
the aforementioned problem is still rare to encounter. However,
in the general black-box testing configuration, as suggested by
Theorem 2, safety evaluations algorithms of Type-I difference
does not have a work-for-all adversarial testing strategy.

2) Testing Cassie With Type-II Different Algorithms: More-
over, consider the SR Cassie uniformly selecting the locomotion
controller from {RPPO,HZDES} at each run of a scenario. Let it
be tested against two safety evaluation algorithms with different
Us (i.e., Type-II difference), as shown in Fig. 4(a), denoted as
U1 and U2. It is immediate that the control action magnitude

TABLE I
EFFICIENCY (TOTAL NUMBER OF RUNS OF SCENARIOS) COMPARISON

BETWEEN ALGORITHM 3 AND THE DIRECT εδ-ALMOST SAFE SET

QUANTIFICATION AGAINST RPPO WITH δ = [0.1, 1], β = 0.0001

cannot be taken as the aggressiveness indicator given each U
“specializes” at a certain subregion of actions.

The εδ-almost controlled safe set against the testing action
set of U1 is shown in Fig. 4(b). The corresponding almost
controlled safe set of U1 is not calculated directly as one relies
on Algorithm 3 to make the aggressiveness comparison.

The derivation of the illustrated almost safe set in Fig. 4(b)
follows the one presented in Appendix C and is executed at line
2 in Algorithm 3. By proceeding with the algorithm of deploying
the obtained εδ-almost safe setΦ1 to be tested againstU2, line 12
is triggered, and the testing algorithm with U1 is, thus, deemed
ε-almost more aggressive than or equally aggressive with the one
usingU2 at the resolution accuracy level justified by δ with confi-
dence level at least 0.9999. Moreover, the empirical advantage of
Algorithm 3 withU (a direct extension of Algorithm 3 replacing
the testing policy π with the testing action space) compared with
the direct quantification algorithm for aggressiveness compari-
son is shown in Table I. Note that QNT T Eu

2
(O,RH, ε, β, δ) de-

notes the εδ-almost controlled safe set quantification algorithm
with the testing action set U2 against the SR uniformly selecting
controllers from RH = {RPPO,HZDES}. It is immediate from
Table I that the proposed method is more sampling efficient than
the direct quantification of the εδ-almost controlled safe set for
the aggressiveness comparison propose.

Note that for this particular example, the risk-aggressiveness
equivalence is empirically valid. Consider 1000 uniformly sam-
pled runs of scenarios, the algorithm with U1 and U2 end up
with the observed failure rate of 17% and 10%, respectively.
However, the intuitive risk-aggressiveness equivalence is not
always valid as we have analytically discussed in Section IV and
will empirically illustrate toward the end of the next subsection.

B. Case Study With Decision-Making Modules

The second case is concerned with the application of safety
evaluation of vehicle decision-making modules. In this study, we
consider two decision-making modules, πc

0 and πa
0 , affiliated

with the SV. Similar to the example in Fig. 1, the subscript 0
denotes the SV-related property, and the subscript 1 is used for
the other lead vehicle as we shall introduce later. πc

0 admits an
adaptive-cruise-control-type driving policy that always tracks
the lane center, adapts its speed to the lead principal other
vehicle (POV) constrained by the speed limit, and takes the
longitudinal braking as the only collision avoidance maneuver
(i.e., the SV never changes lanes). The described functionality
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Fig. 5. (a) OSS configuration for the case study with decision-making modules, and some conceptual example runs of scenarios between some of the selected
decision-making module and testing policy pairs: (b) the POV performs a lane change and braking maneuver that forces the SV to brake-to-stop typically observed
between πc

0 and π1 ∈ {πh
1 , π

p
1 , π

e
1}, (c) the POV follows a similar maneuver as in (a), but the SV performs a lane change for collision avoidance and speed

maintenance typically observed between πa
0 and π1 ∈ {πh

1 , π
p
1 , π

e
1}, and (d) the POV stays on the intended trajectory of the SV while forcing the dx to decrease

typically observed between πa
0 and π1 ∈ {πp

1 , π
e
1}.

is achieved through the intelligent driving model (IDM) [52],
which is one of the most well-adopted longitudinal driving
models in the field [14], [19], [34], [35]. On the other hand,
πa
0 extends the capability of πc

0 by considering POVs on the
adjacent side lanes with the lane change decision generated
through the module of minimizing overall braking induced by
lane changes (MOBIL) [53]. The detailed formulation of IDM
and MOBIL, the hyperparameters of the mentioned modules,
and the simulation implementation in Python language can all
be found at [54].

In this study, we consider the testing performed within a
three-lane straight road (with 3.7-m lane width) configuration
involving the interaction between one SV and one POV
persistently staying in front of the SV, as shown in Fig. 5(a).
This is a common configuration in both related research
work [5], [7], [14], [34] and established vehicle safety testing
standards [20], [21], [22]. The OSS is, thus, a 4-D space as
S = Dx ×Dy × V0 × V1 with the dhw dx ∈ Dx = [0, 50] m
(i.e., the longitudinal offset between the center of the front
bumper of the SV and the center of the rear bumper of the POV),
the lateral offset dy ∈ Dy = [−3.7, 3.7] m (i.e., the lateral dis-
tance between the geometric center of two vehicles), and the set
of global speeds of SV and the POV satisfyingV0 = V1 = [0, 25]
m/s. Note that the dhw dx is capped off at a sufficiently large
value (50 m) as states associated with larger values are not of
safety concern. The vehicle heading angle is not considered
as the primary feature of OSS as it is often limited with the
feasible maneuvers (lane keeping and single lane change) in
the given OSS. Similar to the bipedal locomotion case, some
other states are considered as disturbances and uncertainties
following a certain unknown distribution. Finally, the failure
set C denotes the rear-end vehicle-to-vehicle collision event.

Note that the class of safety testing algorithms T Eπ is con-
sidered for this case study, as the explicit testing policy is a
relatively feasible and commonly observed methodology in the
vehicle testing field. In particular, we consider five different
testing policies controlling the motion of the lead POV denoted
as πs

1, π
b
1, π

h
1 , π

p
1 , and πe

1 explained in detail as follows.
1) The steady-state policy πs

1: The POV stays in the initial-
ized lane and travels at the initialized speed indefinitely.

2) The persistent braking policy πb
1: This policy shares a

similar lateral controller with πs
1, but the longitudinal con-

trol is replaced with a consistent brake-to-stop maneuver.
This particular testing policy is commonly observed at

various formal testing standards and research publications
for safety evaluation of longitudinal advanced driver assist
system modules [21], [22], [35].

3) The hybrid testing policy πh
1 : This is also a policy inspired

by established testing standards [20], [23], where the POV
takes a hybrid testing approach. If the POV is initialized
in front of the SV within the same lane, we have πh

1 = πb
1.

Otherwise, the POV will first reach the nearest adjacent
lane beside the SV and execute a heuristic longitudinal
controller that seeks to force the value of τ =

dy

v0−v1
(also

known as the time-to-collision value in the literature [2]) to
satisfy τ ∈ [0, 2] s and dx ≥ 2 m. If the desired condition
is fulfilled, πh

1 then proceeds with a lane change to the
SV’s lane, and an immediate brake-to-stop after the lane
change is accomplished.

4) The model predictive testing policy πp
1: The fourth testing

policy, πp
1 , follows the online adversarial testing approach

proposed in [19], where the POV constantly predicts the
future motion trajectory of the SV through model insights
and assumptions and tracks the predictive trajectory to
force the 	2-norm distance between the two vehicles to
be sufficiently small. In the example with the lead POV
initialized in the left adjacent lane of the SV (see Fig. 5) and
letting SV be equipped with πa

1 , πp
1 may make consecutive

single lane change maneuvers to stay in front of the SV.
This makes it different from πs

1 and πb
1 as the lead POV

does not change lanes, orπh
1 as the lead POV changes lanes

at most once. One can refer to [19] for other examples of
πh
1 in the safety testing of vehicles.

5) The learning-based testing policy with evolution strategy
πe
1: πe

1(·; θ) is configured as a two-layer neural network
parameterized on θ. The parameters are learnt through
the evolution strategy with the reward design encouraging
rear-end collisions and short vehicle-to-vehicle distances.
πe
1 then uses the empirically best found parameters θ∗ for

all the tests. The learning method is the same with the one
adopted to learn the HZDES policy for Cassie in the last
case study section. Given the state information of both
vehicles, πe

1 determines a desired speed and one of the
three desired lateral control modes (lane keeping, single
lane change to the left, and to the right) at 10 Hz. The
desired speed is then tracked through the same IDM used
by πc

0. The selected lateral control mode is first mapped
to a lateral target position and then tracked by another
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Fig. 6. Some examples of the subspace slices of the εδ-almost safe sets (denoted as the colored regions in all subfigures) obtained from testing πa
0 using the

testing policies πh
1 and πe

1 (ε = 0.01, β = 0.0001, δ = [5, 3.7, 5, 5]). (a) Slices of Φa
h. (b) Slices of Φa

e .

lateral proportional derivative (PD) controller. The PD
controllers ensure that the overall trajectory is smooth and
feasible.

Note that both πp
1 and πe

1 admit the same lane change gap
acceptance with πh

1 as 2 m with respect to the common sense of
responsibility. That is, the POV will reject to move to the SV’s
lane if the longitudinal dhw dx ≤ 2. Moreover, some technical
details of the testing policies are not discussed here as the pri-
mary focus of this article is not to propose a particular adversarial
testing policy, π1, for the vehicle decision-making modules. The
aforementioned five policies are selected as they are inspired by
different sources (regulatory standards and research literature),
they are created in different forms (concrete open-loop strategy,
simple feedback policy, and complex neural networks), and, as
we should show later, they perform differently. One can refer
to Fig. 5(b)–(d) for some examples of behavioral differences
among the mentioned testing policies.

For each pair of the decision-making module and testing
policy (πx

0 , π
y
1 ) with x ∈ {c, a} and y ∈ {s, b, h, p, e}, one ob-

tains an εδ-almost safe set Φx
y with ε = 0.01, β = 0.0001, and

δ = [5, 3.7, 5, 5]. Some examples of the subspace slices for Φa
h

and Φa
e are shown in Fig. 6(a) and (b), respectively. Although

|Φa
e | < |Φa

h|, note that each testing policy also manages to force
the SV into some unsafe states that the other policy ends up
with safe justifications, i.e., |Φa

e \ Φa
h| 
= |Φa

h \ Φa
e | 
= 0. For

example, consider that the lead POV starts from the left-side
lane near the SV at 10 m ahead and operates at 15 m/s faster
than the SV with the decision-making module of πa

0 [i.e., near
the upper right corner of the first column, second row subplot
in Fig. 6(a) and (b)]; the obtained runs of scenarios are shown
in Fig. 7 against πh

1 and πe
1. Note that πh

1 stayed on the side
lane significantly longer than πe

1 (induced by the nonzero lateral

Fig. 7. Given s0 as dx = 10, dy = −3.7, v0 = 5, and v1 = 20, part of the
state trajectories testingπa

0 usingπh
1 andπe

1 is compared. Note thatπh
1 manages

to cause a collision and πe
1 forces the SV to brake-to-stop without any failure

event.

offset) and executed the lane change and braking maneuver at
the appropriate moment to force the collision. On the other hand,
πe
1 started the attack (lane change and braking) too early and too

abrupt, and failed to force the failure outcome before the SV
braking to stop. The above observation is very common among
the studied pairs of testing algorithms, as illustrated in Table II
. Note that the intersection-over-union (IoU) ratio IoU(Φ0,Φ1)
is defined as |Φ0∩Φ1|

|Φ0∪Φ1| . As the IoU ratio of all the pairs of almost
safe sets are smaller than 1, all sets are different. Furthermore,
note that the nonzero value of |Φ0 \ Φ1|/|O| implies that Φ0

contains some states that are not covered by Φ1. Among the
testing policy pairs involving πh

1 , πp
1 , and πe

1, the set difference
exists in both ways for both subject policies (as shown by the
last three columns of Table II). That is, there are always some
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TABLE II
SET DIFFERENCE ANALYSIS COMPARING ALL PAIRS OF TESTING POLICIES AGAINST THE SAME DECISION-MAKING MODULE

TABLE III
EMPIRICALLY OBSERVED FAILURE RATE FOR 1000 RUNS OF SCENARIOS WITH

THE INITIALIZATION CONDITION UNIFORMLY DISTRIBUTED IN THE GIVEN O

states initialized from which one testing policy forces unsafe
outcomes, while the other policy fails to do so. On the other
hand, note that for both x ∈ {a, c}, Φx

s ⊂ Φx
b ⊂ Φx

p , Φx
b ⊂ Φx

h,
and Φa

b ⊂ Φa
e . By Definition 7, the persistent braking policy πb

1

is ε-almost more adversarial than the steady-state policy πs
1, and

the hybrid testing policy πh
1 is ε-almost more adversarial than

the persistent braking policy πb
1, at the given resolution level

dictated by δ.
A further exploration of Algorithm 3 ends up with the same

outcome identified by the above quantification outcomes. Note
that for policy pairs that are significantly different (e.g., (πe

1, π
s
1)

and (πe
1, π

s
1)), even if the SV survives the desired runs of

scenarios, one rarely satisfies (17c), and line 14 of Algorithm 3
is, thus, triggered with the almost safe set quantification of both
the testing policies. If tested against π0 uniformly distributed in
{πa

0 , π
c
0} with ε = 0.01, β = 0.0001, δ = [10, 3.7, 5, 5], among

the 20 pairwise permutations of the five testing policies ( 5!
(5−2)! ),

half of them end up satisfying line 12 in Algorithm 3 with exactly
917 runs of scenarios for each validation [by (17a)]; four of them
trigger line 14 for the complete quantification with 2398 runs of
scenarios on average. The rest of the pairs terminate at line 6
with an observed collision. Similar to the Cassie case in Table I,
the sampling efficiency can be further improved for larger ε,
δ-neighborhood, and β.

Note that the above subtle differences among testing ap-
proaches are made possible by the set-based safety metric
presented in this article. If adopting the traditional observed
risk-based approach, as shown in Table III, the aggressiveness
of the testing policy πy

1 grows monotonically w.r.t. the order of
{s, b, h, p, e}. The learned policy from the evolution strategy is,
thus, the most aggressive approach for both the subject policies.
However, recalling the previous discussion, it is not necessarily
the case as the basic transitive property is not satisfied (e.g., the
SV tested safe against πe

1 in the case shown in Fig. 7 is not safe
against πh

1 ).
We conclude this section by emphasizing that the absolute

black-box assumption by Remark 1 is technically impossible for
the specific OSS studied in this section even if one assumes the

SV’s decision-making module being a black-box. Owing to the
powertrain dynamics, one cannot request an arbitrary accelera-
tion at any time. Thanks to the nonholonomic nature of vehicles,
the lateral motion is strictly limited. Given the commonly agreed
traffic rules, a vehicle typically stays persistently stationary after
brake to stop. These constraints and possibly other limitations
are established through over a century (since the first invention
of the vehicle in 1886) of joint efforts across various entities,
regions, and research disciplines. As a result, Theorem 2 is not
valid as the testing system is not a black-box in its complete OSS.
However, the black-box nature may still hold in a certain subset
of OSS, and the implications of the impossibility theorem of
black-box testing are still there. As we have demonstrated above,
there does not exist a particular testing policy that dominates the
safety test outcomes at all states. Moreover, it remains possible
that Theorem 2 applies to a certain other OSS where Remark 1
is valid, yet details are beyond the scope of this article.

VI. CONCLUSION

This article studied the class of black-box scenario-based
safety testing algorithms with a particular focus on the formal
justification of the algorithm’s aggressiveness. For algorithms
of Type-I difference with a variety of different state–action ex-
ploration orders, an impossibility theorem for safety testing (see
Theorem 2) was presented, which provably reveals that all the
algorithms are equal in performance; hence, the aggressiveness
comparability does not exist in the studied case. Moreover, for
algorithms of Type-II difference with different sets of state-
dependent testing actions and feedback testing policies being
adopted, the presented impossibility theorem no longer applies.
We, thus, proposed the idea of using the εδ-almost (controlled)
safe set to help characterizing the performance of the testing
method (with Definitions 6 and 7). A practically efficient (as
discussed empirically in Section V) and provably unbiased (by
Theorem 3) algorithm was also presented that helped justify if
a given testing approach is more adversarial/aggressive than the
other. Finally, the case study with bipedal locomotion controllers
and vehicle decision-making modules were also presented. The
empirical observations support various theoretical claims pre-
sented in this article.

For algorithms of Type-I difference, it is of future interest to
expand the implications of the presented impossibility theorem
with more challenging cases. For algorithms of Type-II differ-
ence, especially with Algorithm 3, the CoD requires some future
attention as the algorithm can be computational inefficient with
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high-dimensional OSS designs. The algorithmic differences can
be further extended to a combination of Type-I and Type-II,
as well as other possible forms. The aggressiveness analysis
remains a challenge for those complex extensions.

APPENDIX A
PROOF OF THEOREM 2

The following proof first transfers the notion of P(gm |
fs,m, T Eu) given an arbitrary safety cost design to the same
format studied by the previously proposed NFL theorems in
the black-box optimization literature [30]. One then follows the
similar technique from [30, Appendix A] to finish the proof. Note
that the inner product formulas discussed in [31] potentially give
rise to an alternative to the presented proof, yet details are beyond
the scope of this article.

Proof: The propagation of a run of a scenario starting from
s0 ∈ O with fs against a sequence of selected testing actions
ū is simply a mean to acquire the required input of the cost
function c, i.e., a run of a scenario. One can rewrite the required
input scenario run as a function of the initialization state and the
testing action sequence as

R(s0) \ {s0} =
[
fs(s0,u[1]) fs(fs(s0,u[1]),u[2]) . . .

]
=

[
f̄1(s0,u[1]) f̄2(s0, [u[1],u[2]]) . . . f̄m−1(s0,u)

]
= f̄(s0, ū) (18)

and f̄ : O × Uk → Ok. Note that f̄ is not uniformly distributed

on Ok(O×Uk)
. However, as fs is uniformly distributed on OO×U

by Remark 1, each function entry of f̄ , f̄i, i ∈ Zm−1, is uni-
formly distributed on OVi

i for a certain Oi ⊂ O, Vi ⊂ O × U i

and O1 = O, V1 = O × U . As a result, we have f̄ being uni-
formly distributed on F̄ = ŌV̄ with Ō ⊂ Ok and V̄ ⊂ O × Uk.
Let om ∈ Ōm be a sequence of m runs of scenarios.

The proof then follows with two steps. The first step is to show
that the acquisition of any om is irrelevant from the selected
testing algorithm T Eu, i.e.,∑

f̄∈F̄

P(om | f̄ ,m, T Eu
1 ) =

∑
f̄∈F̄

P(om | f̄ ,m, T Eu
2 ). (19)

The second step is to associate P(om | f̄ ,m, T Eu) with P(gm |
fs,m, T Eu) in a way that is irrelevant for the testing algorithm
T Eu.

We start from the first step. Note that (19) is similar to a stan-
dard optimization form analyzed in the previous literature [30].
The overall proof then follows a two-step induction. One first
considers m = 1; we have∑

f̄∈F̄

P(o1 | f̄ ,m = 1, T Eu)

=
∑
f̄∈F̄

[[o1, f̄(s
1
0, ū

1)]] =
|V̄ ||Ō||V̄ |

|V̄ | . (20)

The last equality is established as [[o1, f̄(s10, ū
1)]] = 1 only for

the particular f̄ that propagates the exact run of a scenario o1

given s10 and ū1. The induction then follows with∑
f̄∈F̄

P(om+1 | f̄ ,m+ 1, T Eu)

=
∑
f̄∈F̄

P({om+1[1], . . . , om+1[m+ 1]} | f̄ ,m+ 1, T Eu)

=
∑
f̄∈F̄

P(om+1[m+ 1] | om, f̄ ,m+ 1, T Eu)

· P(om | f̄ ,m+ 1, T Eu)

=
1

|Ō|
∑
f̄∈F̄

P(om | f̄ ,m+ 1, T Eu)

=
1

|Ō|
∑
f̄∈F̄

P(om | f̄ ,m, T Eu). (21)

Combining (20) and (21) implies that
∑

f̄∈F̄ P(om | f̄ ,m, T Eu)
is independent of T Eu.

To proceed with the second step, consider an arbitrary cost
function c : Ō → G. For each gm ∈ Gm and m ∈ Z, one must
have a corresponding set of J sequences of runs of scenarios
{ojm}j∈ZJ

such that the obtained sequence of costs remains as
gm for all om ∈ {ojm}j∈ZJ

. Therefore∑
fs∈Fs

P(gm | fs,m, T Eu) =
∑
j∈ZJ

∑
f̄∈F̄

P(ojm | f̄ ,m, T Eu).

(22)
As the right-hand side of the above equation is irrelevant for the
testing algorithm T Eu, so is the left hand side. This completes
the proof. �

APPENDIX B
PROOF OF THEOREM 3

Proof: If Φ′
1 \ Φ1 = ∅, the two policies are immediately

equally aggressive by Theorem 1 and Definition 7.
Otherwise, let

p∗ = P({s ∈ Φ′
1 \ Φ1,R(s) ∩ C 
= ∅}). (23)

We consider the following two cases.
1) If p∗ < ε, by Definition 2, the two policies are equally

aggressive.
2) Otherwise (p∗ ≥ ε), we have∑

s∈Φ′
1\Φ1

pS(s) · P({R(s) ∩ C 
= ∅}) < ε (24)

by (17c) and (23).
That is, there must existΦ2 ⊇ Φ′

1 andΦ2 is ε-almost safe with
confidence level at least 1− β. This proves the theorem. �

APPENDIX C
ALMOST SAFE SET QUANTIFICATION ALGORITHM

The almost safe set quantification algorithm
QNT T Eπ (O, F̄s, ε, β, δ) is summarized in Algorithm 4
adapted from [36] using the notations presented in this article.
Note that pop, reachable, norm-nearest, remove,
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Algorithm 4: Almost Safe Set Quantification.

1: Input: O, F̄s, C, ε, β, δ, π from T Eπ.
2: Initialize: δ-covering set Φδ = ΦO

δ with centroids Φs,
graph Gs = (Φs, Es), Es = ∅ ⊂ O2 and
Gu = (Du, Eu), Du = ∅ ⊂ S,Eu = ∅ ⊂ S2,
prioritized replay buffer B = ∅, N=0.

3: While N < lnβ
ln (1−ε) :

4: If B = ∅
5: s0 ∼ U (Φs)
6: Else
7: sb = B.pop(), s0 = Φs.norm-nearest(sb)
8: End If
9: Get τ = R(s0) with fs ∼ U (F̄s) and π

10: If τ ∩ C 
= ∅
11: For i in Z|τ |−1 do
12: B.append(τ [i])
13: For s in Reachable(τ [i], Gs) do
14: Φs.remove(s)
15: Eu.append((τ [i], τ [i+ 1]))
16: End For
17: B.append(τ [i+ 1])
18: End For
19: N = 0
20: Else
21: s̄ = s0, Ns = |Φs|
22: For i in {2, . . . , |τ |} do
23: If τ [i] /∈ Φδ

24: Es.append((s̄, τ [i]))
25: s̄ = τ [i]
26: End If
27: End For
28: If Ns = |Φs| and B = ∅
29: N+ = 1
30: Else
31: N = 0
32: End If
33: End If
34: Output: Φδ,Φs

and append are all notional functions. X .pop() returns a
point x ∈ X and removes it from the set. reachable (s, G)
returns all the vertices on the graph G that connects, directly
and indirectly, to the point s through a depth-first-search
routine. The commands remove and append simply remove
a point from or add a point to the given set, respectively.
X .norm-nearest(x) returns the nearest point to x in X
in terms of the normalized 	2-norm distance. That is, x and
all points in X are first normalized w.r.t. the admissible value
range of each individual dimension, and one then propagates
the 	2-norm distance between the normalized x and X .

Algorithm 4 can be directly applied to the case study with
decision-making modules. To apply the algorithm to the bipedal
locomotion controller case, one should: 1) replace line 9 with
uniform sampling of the external force from Fx × Fy for the
state-invariant U (e.g., Fig. 4) or 2) make the state-dependent

U(s) part of the given OSS (i.e., replace the input OSS O
with O′ = ∪s∈O{s} × U(s)), and the run of a scenario at line 9
simply follows the selected initialization state from the modified
set O′.

The example code of Algorithm 4 in Python can be found
in [41].
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