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Abstract— Traditional one-step preview planning algorithms
for bipedal locomotion struggle to generate viable gaits when
walking across terrains with restricted footholds, such as step-
ping stones. To overcome such limitations, this paper introduces
a novel multi-step preview foot placement planning algorithm
based on the step-to-step discrete evolution of the Divergent
Component of Motion (DCM) of walking robots. Our proposed
approach adaptively changes the step duration and the swing
foot trajectory for optimal foot placement under constraints,
thereby enhancing the long-term stability of the robot and
significantly improving its ability to navigate environments
with tight constraints on viable footholds. We demonstrate its
effectiveness through various simulation scenarios with com-
plex stepping-stone configurations and external perturbations.
These tests underscore its improved performance for navigating
foothold-restricted terrains, even with external disturbances.

I. INTRODUCTION

Bipedal robots are designed to collaborate with humans
while navigating complicated and crowded human environ-
ments built for our daily lives. These environments often
restrict the robot’s viable footholds, requiring the robot to
be able to adaptively plan its gaits in real-time so that the
foot always lands in given limited areas. In the literature on
bipedal locomotion, such limited areas are often regarded
as stepping stones, as illustrated in Fig. 1. Many dynamic
walking algorithms fail to successfully tackle stepping stones
as they often assume the foot can be placed anywhere within
the allowable workspace of the swing foot. A noticeable
exception in the literature is the use of full-body trajectory
optimization with foothold constraints. For example, a library
of gaits can be generated offline with a set of fixed stepping-
stone profiles, and then interpolated online given the real-
time feedback of the next foot placement area [1] or adapted
through an online MPC with a whole-body controller [2].
However, the adaptability of such approaches is limited due
to the difficulty in optimizing a full-body trajectory in real-
time for any given stepping stone profile.

A popular approach to mitigate the complexity of robot
dynamics in gait planning is using reduced-order template
models to represent the critical progression of bipedal robots
during locomotion. The most commonly used model, the
linear inverted pendulum model (LIPM), describes the center
of mass (CoM) dynamics with an inverted pendulum with
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Fig. 1. Digit robot stably walks across four challenging stepping stone
scenarios in MuJoCo simulation by dynamically adjusting both step duration
and stepping locations.

a constant height [3]–[6]. To provide a criterion for gait
stability of pendulum-based CoM dynamics models, the
capturability [7] and the Divergent Component of Motion
(DCM) [8] decouple the stable and unstable dynamics based
on the viable states (i.e., states that do not lead to falling).
Those analyses also show that a variable step duration can
increase the range of viable states and allow robots to prevent
falling by taking faster and wider steps. However, such a
time-varying variable usually leads to nonlinear and non-
convex planning problems, which require heavy computing
resources and thus impede its implementation in online
controllers. Griffin et al. formulate a continuous-time MPC
for the time-varying DCM as a mixed-integer quadratically
constrained quadratic program (MIQCP) that shows good
resistance to force perturbations but suffers from slow online
solving (average about 72 ms) [9].

The decoupling of the stable and unstable dynamics
through DCM allows the gait planner to regulate both step-
ping position and timing conveniently. Khadiv et al. intro-
duce the DCM offset to represent the viability bounds of the
LIPM model and formulate the desired step position and step
duration into an online quadratic programming (QP) [10].
Their foot placement planner finds an optimal foot placement
to ensure bounded viable states, thus improving perturbation
resistance. There are also extended works for more compli-
cated stepping strategies [11] and more challenging walking
perturbation [12], which implies their potential application
in bipedal locomotion on stepping stones. Nonetheless, these
approaches depend on one-step preview planning, in which
the gait features are determined without considering the
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restrictions on future foothold locations. Consequently, this
limits their adaptability to traverse randomly placed stepping
stones.

In this work, we develop a multi-step preview gait plan-
ning approach to improve the overall stability and long-
horizon viability of bipedal walking, even in the presence
of severe constraints on the footholds. We introduce a
multiple-step Model Predictive Control (MPC) formulation
to adjust step durations and stepping positions while walking
over randomly located stepping stones. Our formulation
uses the modified form of DCM based on the contact
angular momentum rather than the linear velocity of the
base. This is inspired by the improved performance of the
angular momentum-based linear inverted pendulum (ALIP)
in bipedal locomotion on various terrains due to better
approximation of robot dynamics [13]–[15]. We validated the
proposed approach with Digit humanoid in simulation under
various types of stepping stone profiles and perturbations.
Compared with the one-step preview algorithm in [10],
our planner achieves more robust bipedal locomotion over
challenging scenarios.

The remainder of the paper is organized as follows:
Section II introduces the modified DCM formulation, and
Section III proposes a multi-step preview planner that adap-
tively changes step durations to remain stable on stepping
stones. Section IV discusses the modification in low-level
task space tracking controller in response to adaptive step
durations. Section V shows the simulation results with the
Digit robot, and finally Section VI briefly concludes the
contributions and discusses future plans.

II. DIVERGENT COMPONENT OF MOTION ANALYSIS OF
BIPEDAL LOCOMOTION

This section introduces the modified DCM formulation
based on the contact angular momentum-based linear in-
verted pendulum (ALIP) model. We also explicitly discuss
the bounds of step positions and durations for stable loco-
motion.

A. Center of Mass Dynamics of Bipedal Robots

We consider the ALIP model on a flat ground with
an underactuated single-support phase and an instantaneous
double-support phase [13]. Using xc, yc, zc to denote the
CoM position in the right-handed contact point frame, the
ALIP dynamics are given by

ẋc =
Ly

mzc
, ẏc = − Lx

mzc
,

L̇x = −mgyc, L̇y = mgxc,

(1)

where zc is the constant CoM height, Lx, Ly are the x, y-
component of the angular momentum about the contact point
(i.e., contact angular momentum), m is the mass of the robot,
and g is the gravitational acceleration constant. Compared to
the LIPM described in [3], the ALIP model uses the contact
angular momentum Lx, Ly instead of the linear velocities
of the CoM. This change reduces the mismatch between the
template model and the real robot state as it only assumes

Fig. 2. Schematic view of the DCM evolution with step positions and
footprints. During the k-th step, the DCM evolves from ξk0 to ξkT and is
reset to ξk+1

0 in the new contact frame after the touch-down.

the centroidal angular momentum is zero instead of the rate
of change of the centroidal angular momentum is zero [13].

B. Discrete Dynamics of the initial DCM

The ALIP dynamics in (1) can be transformed into a
system that separates the stable and unstable parts of its
dynamics, where the latter is its Divergent Component of
Motion [8]. Using the states of the ALIP model, the DCM
ξ = [ξx, ξy]

T in the contact frame is given by

ξ =

[
xc

yc

]
+

1

λ

1

mzc

[
Ly

−Lx

]
, λ =

√
g

zc
. (2)

Substituting the ALIP dynamics (1) into (2), we can obtain
the DCM dynamics as ξ̇ = λξ with the solution

ξ(t) = ξ0e
λt, t ∈ [0, T ], (3)

where t is the elapsed time (or relative time) from the
beginning of the current swing phase, T is the step duration,
and ξ0 is the initial DCM at t = 0. During a walking step,
the DCM ξ(t) increase exponentially over the time t and is
reset to an initial value after a swing foot touch-down due
to the update of the contact frame (see Fig. 2). Suppose that
the current step is the k-th step (k ∈ N+), ξk0 and ξkT are the
initial and final value of the DCM of the k-th step, and ξk+1

0

is the initial value of the (k+1)-th step that is also referred to
as the DCM offset at the end of the k-th step in [10]. Then,
the reset map of the DCM is given by

ξk+1
0 = ∆k(ξ

k
0 ) = ξkT − pk

TD = ξk0e
λTk

− pk
TD, (4)

where pk
TD = [xk

TD, ykTD]T is the k-th step position in the
current contact frame and T k is the k-th step duration.

Note that the DCM is innately decoupled in x- and
y-direction. For a 3-D bipedal model, there will be an
alternating step width wl/r for the left or right swing foot
even if the robot is stepping in place. Thus, we define the
lateral step position ykTD := wl/r + W k, where wl/r is a
fixed step width of the left or right swing foot during in-place
lateral walking, and W k is an offset to wl/r that accounts
for the actual lateral movement. That is, given a fixed step
width w > 0, the signed step width for the left swing foot is
wl = w > 0 and for the right wr = −w < 0. For instance,



Fig. 2 shows a rightward walking in the y-direction with
W k < 0.

For a periodic gait with a constant step position pk
TD =

[L,wl/r +W ]T and duration T k = T , the nominal value of
the initial DCM ξ0,nom can be derived from (4) as

ξ0,nom =

[
ξ0,x,nom
ξ0,yl/r,nom

]
=

 L

eλT − 1
wl/r

eλT + 1
+

W

eλT − 1

 , (5)

where ξ0,yl/r,nom of the left or right swing foot are solved by
considering two consecutive steps (i.e., one cycle of lateral
walking).

In the x-direction, given a bounded set D of allowable step
position and T of allowable step duration, we can obtain a
bounded set X of the nominal initial DCM computed by the
values in D and T using (5), i.e., ξ0,x,nom(L, T ) : D×T →
X , ∀L ∈ D, T ∈ T . Each element in this set represents
a particular periodic walking gait corresponding to a foot
placement (L, T ), which leads to the following proposition.

Proposition. Given appropriate allowable sets Dk, T k ⊂ R
of the k-th step, for any initial DCM ξk0,x in X k that evolves
once into ξk+1

0,x using (4), there exists at least one allowable
foot placement (Lk, T k) such that ξk+1

0,x still remains in X k.

Proof. Let Dk = [Lmin, Lmax] with Lmin < 0 < Lmax and
T k = [Tmin, Tmax] with 0 < Tmin < Tmax, the bound of
X k is given by (5) as

ξ0,x,min =
Lmin

eλTmin − 1
< 0,

ξ0,x,max =
Lmax

eλTmin − 1
> 0.

(6)

For any ξk0,x ∈ X k, the evolved initial DCM by the foot
placement (Lk, T k) is ξk+1

0,x = ξk0,xe
λTk − Lk. Thus, by

choosing (Lk, T k) as (Lmin, Tmin) or (Lmax, Tmin), ξk+1
0,x

can be bounded as

ξk+1
0,x ≥ Lmin

eλTmin − 1
eλTmin − Lmin = ξ0,x,min,

ξk+1
0,x ≤ Lmax

eλTmin − 1
eλTmin − Lmax = ξ0,x,max,

(7)

i.e., ξk+1
0,x remains in X k.

A similar result also applies to the y-direction, where
there exist two consecutive foot placements such that any
initial DCM ξk0,yl/r has a bounded evolution. The bound of
such X is referred to as the ∞-step capturability bound d∞
(or viability bound) in [7] that theoretically distinguishes
the stable walking gaits from the unstable ones, and such
a bounded (or viable) evolution of the DCM represents a
walking gait that never falls. Moreover, it can be shown that
the evolution of the initial DCM in the interior of X can
increase the viability margin, which implies a more ”stable”
walking system [16].

For bipedal robotic walking without terrain and physical
(e.g., leg length) constraints, the allowable sets of each foot
placement are almost identical (though symmetric in the

y-direction). Thus, we can always find at least one stable
gait that converges to a periodic one given an appropriate
initial DCM ξ10 . However, even if the allowable sets of
foot placements are constrained, it is still possible to find
such stable gaits. This intuitively inspires a foot placement
strategy on restricted footholds.

III. SWING FOOT PLACEMENT PLANNING VIA DISCRETE
MODEL PREDICTIVE CONTROL

The main contribution of this work is to design a foot
placement planner on the stepping stones with high accuracy
and resistance to external perturbations. The stepping stones
can be modeled as a sequence of bounds on each step po-
sition, which leads to significant constraints on the dynamic
walking. Therefore, multiple future steps must be considered
to find a stable walking gait by exploiting the viable evolution
of the initial DCM with variable step duration.

To simplify the denotation, we define zk := ξk+1
0 ,

uk := pk
TD, and σk := eλT

k

, then the step-to-step discrete
dynamics of the initial DCM by (4) is given by

zk = σkzk−1 − uk, k = 1, 2, ... , (8)

where z0 = ξ10 = ξ(0) is the initial DCM of the current step.
We now propose an MPC formulation based on the dis-

crete dynamics (8) that minimizes the errors between the gait
parameters (zk, σk,uk) and their desired values for multiple
future steps. The design of the optimization constraints and
objectives on the decision variables are as follows:

1) Step Position: For the Digit robot model with under-
actuated ankles and flat feet, we define the step position
uk as the geometric center at the bottom of each stance
foot. A stepping stone profile is given as a sequence of
fixed positions in the world frame, while the robot states
and variables such as the DCM and the step position are
defined in each contact frame. Given the preview of next N
stepping stones in the current contact frame, the target is to
minimize the error between the future step position uk and
stone position pk

stone for k = {1, 2, ..., N}. Thus, the desired
values of each step position are computed as

uk
des =

{
p1
stone, k = 1

pk
stone − pk−1

TD,ccf , k = 2, ..., N
, (9)

where pk−1
TD,ccf should be the actual step position of the future

(k-1)-th step in the current contact frame. Since pk−1
TD,ccf

are unknown during the current step, we use the previous
planning results to approximate their actual values, which
are iteratively updated inside the planner. In practice, if the
planner has not returned the first result right after a touch-
down, we then use the position of the (k-1)-th stone instead.

Moreover, the bound on each step position is defined
as a rectangular area around the pkstone that represents the
physical dimension of each stepping stone.

2) Step Duration: Since we emphasize the accuracy of
the step position and viability of the walking gait, we make
the step duration a slack variable to relax the problem. We
choose a constant nominal value T k

des = Tnom and a constant



bound [Tmin, Tmax] for T k, and assign a small weight for
the step duration term σk in the cost function.

3) Initial DCM: The desired value of the initial DCM zk

are computed using (5) by substituting the desired values of
the step position and duration of the k-th step. The bounds
of the initial DCM are obtained using the mechanical limits
of the robot model, which rules out all the infeasible states
that lead to the robot falling. However, these bounds alone
do not guarantee foot placements that can yield viable states
for all the given stepping stones. Therefore, we choose an
appropriately high weight in the cost term for each zk to
track the desired value. This works as a soft constraint
to enforce a viable evolution of the initial DCM through
multiple steps.

Moreover, since this foot placement planner runs multiple
times during a step, we use the measured value of the
instantaneous DCM ξmea(t̃) to estimate the initial DCM of
the current step z0 by computing it backward using (3):

z0 = ξ10 = ξmea(t̃)e
−λt̃, (10)

where t̃ ∈ [0, T 1] is the current relative time of the step so
that z0 is also iteratively updated using the robot states.

4) Discrete MPC Formulation: Combining (8), (9), (10),
and other constraints defined above, we now formulate the
discrete MPC problem as follows:

arg min
zk,σk,uk

N∑
k=1

βk

(
αk
z

∥∥zk − zkdes
∥∥2

+αk
σ|σk − σk

des|2

+αk
u

∥∥uk − uk
des

∥∥2)
s. t. zk = σkzk−1 − uk,[

zx,min

zyl/r,min

]
≤ zk ≤

[
zx,max

zyl/r,max

]
,

eλTmin ≤ σk ≤ eλTmax ,[
uk
x,min

uk
yl/r,min

]
≤ uk ≤

[
uk
x,max

uk
yl/r,max

]
.

where k = {1, 2, ..., N}, and we use the weights αk
□ and βk

to represent soft constraints on the decision variable such
that: αk

□ assigns relative weights on (zk, σk,uk) for the k-
th future step as we discussed above; βk is a decaying weight
on each future step, addressing the importance of previewing
earlier future steps, especially the imminent next one.

Since the discrete dynamics of DCM (8) takes a bilinear
form about the decision variables (zk, σk,uk), we arrive at a
nonlinear programming (NLP) problem. It takes considerably
longer to solve than convex quadratic programming (QP),
but it is still possible to implement in online foot placement
planning thanks to this discrete formulation.

Remark. This planner formulation is not limited to a spe-
cific type of terrain. Appropriate constraints and weights
to represent different control objectives can be designed
and implemented in a variety of flat-ground robotic walking
scenarios.

Fig. 3. Illustration of updating τ(t) with respect to T i
des. For instance,

when T 2
des is updated at t2, τ(t) becomes the linear function that starts

from τ2 and aims at 1 if t reaches T 2
des.

IV. ADAPTATION OF VARIABLE STEP DURATION IN THE
LOW-LEVEL CONTROLLER

The foot placement planner in Section III updates the
desired step position p1

TD and duration T 1 of the next
step at a low frequency during the current swing phase,
while the low-level controller aims to regulate the robot’s
CoM dynamics towards the ALIP model and track a desired
swing foot trajectory characterized by (p1

TD, T 1) at a high
frequency (e.g., 25Hz and 1 kHz respectively). In this work,
we use an existing whole-body controller presented in [17] to
track these task space outputs and maintain a stable walking
gait. The outputs of the low-level controller are defined using
the robot configuration q as

Ya(q) :=


base height

torso orientation
swing foot position

swing foot orientation

 , (11)

where the desired position of the swing foot is generated as a
3-D polynomial trajectory ending at the desired step position
with the desired step duration.

Note that the low-level controller uses a dimensionless
phase variable τ to drive the trajectories of the robot, which
increases monotonically from 0 to 1 during the current swing
phase. If the step duration is fixed, τ(t) is a linear function
of the relative time t with a fixed slope. However, when the
desired step duration is variable during the swing phase, we
need to compute the phase variable τ accordingly.

Let n be the number of times the planner updates the
desired foot placement during a swing phase, ti and τ i (i =
{0, 1, ..., n}) be the relative timestamp and the phase variable
at the i-th planner update. As the swing phase starting from
t0 = 0 and τ0 = 0, the phase variable τ(t) is designed as:

τ(t) = τ i + (1− τ i)
t− ti

T 1,i
des − ti

, t ∈ [ti, ti+1], (12)

where T 1,i
des is the i-th updated desired step duration. This

design is primarily based on the following key points (See
Fig. 3):

1) τ(t) increases monotonically from 0 to 1 as t increases
from 0 to the last updated desired step duration T 1,n

des ;



2) τ(t) is continuous over t and piecewise linear in all
[ti, ti+1];

3) In each [ti, ti+1], τ(t) increases with a fixed slope such
that it starts from τ i and aims to reach 1 if t reaches
T 1,i
des, and then the slope is updated with the new T 1,i+1

des

at t = ti+1.
Moreover, the time derivative of the phase variable, τ̇(t),

is used to compute the time derivatives of the desired outputs
Ẏdes inside the low-level controller, thus it can be computed
using (12) as:

τ̇(t) =
1− τ i

T i
des − ti

, t ∈ [ti, ti+1]. (13)

V. SIMULATION RESULTS

This foot placement planner is tested on the humanoid
robot model Digit in the MuJoCo simulation environ-
ment [18]. The simulation runs at a fixed time step of 1
ms, the same as the low-level controller. The foot placement
planner runs every 40 ms (i.e., 40 simulation time steps)
and the nonlinear MPC in the foot placement planner is
solved using the open-source solver IPOPT [19]. To balance
the planner performance and computational efficiency, we
choose the number of future steps considered in the MPC as
N = 4, which includes two complete cycles of 3-D bipedal
walking. For all presented simulations, the parameters and
constants of the foot placement planner are chosen as fol-
lows:

• The step position bound is defined as a rectangular area
of dimension 0.2× 0.1 meters centered at each pk

stone;
• The step duration has a nominal value Tnom = 0.5 with

the bound [Tmin, Tmax] = [0.35, 0.65] seconds;
• The initial DCM bounds are computed using the me-

chanical limits of the robot such as
∣∣xk

TD

∣∣ ≤ 0.6 and
0.1 ≤

∣∣ykTD

∣∣ ≤ 0.5 meters with the step duration bound;
• The cost weights for the k-th future step are chosen as

αk
z , α

k
u = [10, 000, 20, 000], αk

σ = 1, and βk = 104−k

for k = {1, 2, 3, 4}, where we double the weights in
the y-direction because the step position bound in y-
direction is half of that in x-direction.

For a comprehensive test of the planner performance, four
types of stepping stone profiles and a perturbation scenario
with four different perturbations are designed to represent the
challenging terrain on the flat ground, where we compare our
N -step preview planner (denoted as ALIP-MPC) with the
one-step preview planner in [10] (denoted as ALIP-QP)1.

A. Robust Walking on Stepping Stones

The stepping stone profiles are listed in Table I. Each
profile contains 32 stones with each relative position com-
puted using (Lj ,W j) as pj

stone,rel = [Lj , wl/r + W j ]T

(j = {1, ..., 32}), where wl/r is chosen as ±0.28 meters.
In the simulation, the robot is initialized in a standing

posture with zero velocity and then walks 6 steps to approach
the first stepping stone. In this speeding-up stage, the robot

1For animation video of the presented simulations, see https://
youtu.be/DjH69m1kbnM.

TABLE I
STEPPING STONES PROFILES

Profile No. Lj (m) W j (m)

I fixed at {0.2, 0.4, 0.55} fixed at {−0.15, 0.15}
II U [0.2, 0.5] U [−0.15, 0.15]

III (0.2*8, 0.5*8)*2 U [−0.15, 0.15]

IV U [0.2, 0.5] (−0.1*8, 0.1*8)*2

Note: Profile I contains 3×2 combinations of fixed Lj and W j ; Profile
II∼IV includes one or two lists of uniformly distributed random values
as Lj and/or W j , denoted as U [·, ·]; Profile III uses a list of alternating
values as Lj , which is 8 consecutive values of 0.2 followed by 8 values
of 0.5 and repeated once, which emphasizes on abrupt changes of stone
positions in the x-direction (similar to W j in Profile IV).

TABLE II
STEP POSITION ERRORS IN PROFILE I

W j Lj 0.2 0.4 0.5

0.15 0.036 0.040 0.020 0.029 0.028 N/A

−0.15 0.039 0.042 0.019 0.024 0.022 N/A

Note: Comparison of step position errors (in meters) in the test of Profile
I. ALIP-MPC outperforms ALIP-QP in these tests, where ALIP-QP fails
in the tests of large step lengths with Lj = 0.55 (m).

is only commanded to reach an appropriate x-velocity before
walking onto the stepping stones with a right swing phase
and thus may run into different initial conditions for the
stepping stone test. Though such uncertainty helps highlight
the robustness of our planner, we try to ensure consistent
initial conditions in each comparison test between ALIP-
MPC and ALIP-QP. As we will discuss below, ALIP-MPC
outperforms ALIP-QP in all the presented simulation results.

1) Profile I: Table II lists the step position errors that are
computed as the root-mean-square errors (RMSE) between
the actual step positions and stone positions. For the test of
Lj = 0.2 and 0.4 meters, ALIP-MPC slightly reduces the
step position errors compared to ALIP-QP. This is because
these tests all lead to periodic gaits and thus the multi-step
preview provides similar information as the one-step preview.
However, in the test of Lj = 0.55 meters, the desired step
length becomes too large and close to the mechanical limit.
ALIP-QP fails to maintain a viable gait starting from the
first step onto the stepping stone due to the harsh initial
condition, while ALIP-MPC completes all the tests thanks
to the strategy that considers the viability of multiple future
steps to decide the next foot placement.

2) Profile II: Each relative stone position is given by
randomly generated (Lj ,W j). ALIP-MPC completes this
test with a step position error of 0.023 meters, while ALIP-
QP ends halfway with the robot falling. Fig. 4 compares
the footprints, the CoM, and the DCM trajectories of two
planners. ALIP-QP fails at the 14th step because the 13th
foot placement yields an initial condition that cannot lead
to viable states given the 14th stone position, highlighting
the significance of the multi-step preview. Fig. 5 compares
the step duration and initial DCM in y-direction of two

https://youtu.be/DjH69m1kbnM
https://youtu.be/DjH69m1kbnM


Fig. 4. Comparison of footprints in Profile II test. The black dots are
the actual step positions, with the black frames illustrating the flat feet of
the Digit, while the green rectangles mark the step position bounds on the
gray stepping stones. (Left, ALIP-MPC) The robot walks stably through the
random stones with a bounded DCM; (Right, ALIP-QP) The robot falls at
the 14th step due to a non-viable foot placement of the 13th step (marked
as red frames).

Fig. 5. Comparison of step duration and initial DCM in the test of Profile
II. The vertical gray lines mark the touch-down moments of walking steps.
(Left, ALIP-MPC) The step duration is adjusted to bound the DCM with
smoother changes; (Right, ALIP-QP) ALIP-QP fails to bound the DCM.

planners, where ALIP-MPC can find foot placements to
maintain viable states with smoother changes in the actual
step duration.

3) Profile III and IV: These two profiles emphasize on
the abrupt changes in the Lj and W j , respectively. The
step position errors of ALIP-MPC in these two tests are
0.027 and 0.024 meters, while ALIP-QP falls after a few
steps. Fig. 6 shows the footprints of ALIP-MPC in both
tests. Even under such challenging stepping stone profiles,
especially with large variations in stone positions in the
lateral direction, ALIP-MPC can find foot placements to
maintain viable states.

B. Perturbation Test on Stepping Stones

This test scenario contains 24 steps on the stepping stones
profile (Lj ,W j) = (0.4, 0) meters and four force perturba-
tions applied from all four directions to the pelvis of the Digit
robot. Each perturbation force lasts from the relative time
t = 0.1 to 0.2 seconds in the specified step with the forces
and directions as follows: 1) 5th step, Fx = 150N; 2) 10th
step, Fx = −150N; 3) 15th step, Fy = 75N; 4) 20th step,
Fy = −75N. The robot states during the perturbation test
are plotted in Fig. 7. Since we choose a stone profile where
the robot walks straightforwardly, the perturbation resistance
of both planners in the x-direction is similar. When the
first perturbation force pushes the robot forward, the robot
takes the next step much faster than usual to keep balance

Fig. 6. Footprints of ALIP-MPC in the tests of Profile III (Upper)
and Profile IV (Lower). The robot completes these tests without any step
violating the step position constraint.

Fig. 7. Robot states of ALIP-MPC in the perturbation test. Four perturba-
tion forces are marked by red, yellow, green, and purple arrows, respectively.
(Upper Left) The x- and y-velocity changes abruptly due to the perturbation
but is quickly restored; (Upper Right) The step duration is adjusted in
response to the perturbation forces to maintain viable states; (Lower Left
and Right) The initial DCM in both x- and y-direction are bounded.

(with increased CoM velocity and decreased step duration).
The second push in the backward direction causes the robot
to slow down and thus increases the step duration. In
both tests, our approach demonstrates excellent capability of
handling adversarial disturbances. When the push directions
are orthogonal (i.e., y direction) to the walking directions,
the feasibility of viable steps is significantly reduced. The
baseline ALIP-QP approach fails under disturbance, whereas
the ALIP-MPC remains stable. This is because ALIP-MPC
considers a longer horizon of locomotion, and therefore, is
capable of regulating the durations of multiple future steps
to improve stability and robustness.

VI. CONCLUSION

This paper presents a discrete-time MPC formulation for
multi-step preview foot placement planning with variable
step duration. We demonstrate its performance of achieving
more robust robotic walking on challenging terrains. Com-
pared to other MPC formulations for stepping stones, the
discrete dynamics of the initial DCM vastly simplify the
optimization problem. However, due to the bilinear constraint
in the optimization constraints, the average solving time
of each iteration is around 30 to 50ms. Future work will
focus on improving the computational efficiency of the
proposed approach and validating its effectiveness in real-
world experiments. We will further develop more rigorous
criteria for gait robustness on complex terrains.
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