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Multi-Contact Bipedal Robotic Locomotion
Huihua Zhao, Ayonga Hereid, Wen-loong Ma and Aaron D. Ames

Abstract

This paper presents a formal framework for achieving multi-contact bipedal robotic walking, and realizes this methodology
experimentally on two robotic platforms: AMBER2 and ATRIAS. Inspired by the key feature encoded in human walking—
multi-contact behavior—this approach begins with the analysis of human locomotion and uses it to motivate the construction of
a hybrid system model representing a multi-contact robotic walking gait. Human-inspired outputs are extracted from reference
locomotion data to characterize the human model or the SLIP model, and then employed to develop the human-inspired control
and an optimization problem that yields stable multi-domain walking. Through a trajectory reconstruction strategy motivated by
the process that generates the walking gait, the mathematical constructions are successfully translated to the two physical robots
experimentally.

I. INTRODUCTION

Human locomotion gaits consist of multiple instances of
both single and double support phases (or domains),1 with
switching between these phases occurring as a result of
changes in contact points with the environment, e.g., a heel-
strike and a toe-off as shown in Fig. 1.2 The multi-domain,
or multi-contact nature of the human gait results in walking
that is both fluid and efficient.3,4 Using the heel-off during
the single support phase, a human can lift the swing leg
higher, and thus achieve greater foot clearance without bending
the swing knee significantly. With the whole body rotating
around the stance toe joint, it requires much less energy
for human to move forward through the beneficial utilization
of rotational momentum, which, therefore, is found to be
important for achieving fast walking.5 While dealing with
these foot dynamic changes is seemingly effortless for a
human, it is quite challenging to incorporate these advantages
into bipedal robot locomotion. Motivated by the advantages
and challenges, multi-contact locomotion with foot motion
has been studied actively in the recent decade aiming to
achieve close human-like locomotion (a few examples can
be found in6,7,8). In particular, the overall objective of this
paper is to take the first steps toward a formal means by
which multi-contact robotic walking can be formally achieved.
More importantly, with the additional of a trajectory generation
methodology based upon the theoretic constructions, we show
that these formal results can be realized experimentally on
physical robots. These results are then verified on two different
bipedal robot platforms, AMBER2 and ATRIAS, which are
shown in Fig. 4.

A. Relationship with Previous Results

Bipedal robotic walking has been studied from a variety of
viewpoints, many of which are aimed at achieving human-like
locomotion capabilities on bipedal robots, i.e., achieving the
stability and robustness found in human walking. From this
perspective, the role of the multi-contact foot behavior is found
to be essential to the locomotion of human both in biome-
chanical research and from studies of human walking gait.
Thence, it becomes necessary to understand and reproduce
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Fig. 1: Walking tiles of the multi-contact locomotion of both
ATRIAS and AMBER2 (top two figures, respectively) are
compared with the diagram of a typical human gait cycle.

the role of the foot on the humanoid robot to achieve human-
like locomotion. In the control and robotic field, only a few of
work have been devoted to the discussion of this multi-contact
feature. Gait pattern generation and gait planning methods
are adopted to design the foot trajectory specifically for the
multi-contact foot behavior in.9,10 An optimized walking gait
with two domains is proposed in11 for a seven-link biped.
Recent works of Nishiwaki et al.,12 Sellaouti et al.5 and
Li et al.13 show that the presence of multi-contact behavior
allow to perform longer strides, walk at a higher speed,
and lower torque requirement. However, the vast majority
of these approaches attempt to reduce the complexity of the
problem through simplifying assumptions that the stance foot
is flat on the ground, i.e., the foot roll only happens at the
double-support phase and the trajectory is designed revolving
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around the Zero Moment Point (ZMP).14,15 Consequently, the
performance of the bipedal robots are constrained by these
two assumptions from utilizing the advantages of this multi-
contact feature of human locomotion, for example, the toe roll
at the end of single-support phase. Simulated robotic walking
with significant toe roll can be found in,7,16 in which the
authors show that the walking gait with toe roll helps with
the reduced torque and faster walking speed. From the authors’
knowledge, noticeably lacking from existing methods from any
of these perspectives is a formal way to generate multi-contact
locomotion in a manner that is both formally correct as well
as physically realizable.

Recent work from the coauthors has looked toward human-
locomotion for inspiration for the synthesis of walking con-
trollers with the goal to achieve human-like robotic locomo-
tion. Point foot model with under actuation is considered in the
work;17,18 the models with one fully actuated domain, i.e., flat-
foot walking, are discussed in the cases of both 2D walking19

and 3D walking.20 While these work is constrained to either
point foot or flat foot walking, it takes the first steps forward
formally generating human-like bipedal robotic walking from
human data in the cases of both under- and full- actuation.
Therefore, with these results in hand, this work is ready to
present a formal way to achieve multi-contact robotic walking
through the inspiration of human locomotion.

B. Contribution of This Paper

With the goal of exploring a general way to produce multi-
contact robotic bipedal locomotion, this paper begins by noting
that the multi-contact behavior (including both continuous
dynamics and discrete dynamics) present in human locomotion
can be represented as a hybrid system. Therefore, a hybrid
system with multiple domains is constructed to describe the
multi-contact robotic locomotion in a general form. Further
motivated by the human locomotion data, the extended canon-
ical walking function (ECWF) is utilized to serve as a low
dimensional representation of the human locomotion system.
This allows for the formulation of human-inspired controllers
that drive outputs of the robot to outputs of the human (as
represented by the ECWF) in an exponential fashion. Moti-
vated by the fact that the multi-contact locomotion consists of
discrete dynamics, i.e., impacts, a multi-domain optimization
problem is proposed to generate controller parameters that
yield invariant tracking even through impacts. More impor-
tantly, this optimization problem is also subject to specific
physical constraints, such as torque bounds and foot scuffing
prevention; therefore, the obtained parameters can be succes-
sively translated to physical robots. Finally, with the partial
hybrid zero dynamics (PHZD) reconstruction strategy,21 this
formal result can be translated into physical robots to achieve
multi-contact robotic locomotion.

Two different robot platforms are considered as examples in
this paper to verify the formal results presented in this paper:
AMBER2 and ATRIAS. With the specially designed artificial
feet, AMBER2 is constructed with the goal to achieve human-
like locomotion with multi-contact foot behavior. Therefore,
human locomotion is used as the reference model to design the

Fig. 2: Domain breakdown of one step of one subject. The
numbers below each tile indicate the percentage of time spent
in that domain. The green circle indicates that particular point
of the foot (toe or heel) is in contact with ground. The red lines
indicate the “non-stance” leg and the black lines represent the
“stance” leg.

parameters of ECWF. Utilizing this reference model, human-
inspired controllers are constructed through an optimization
problem in order to achieve multi-domain human-like loco-
motion. From the perspective of achieving the main attributes
of human locomotion through mechanical design, ATRIAS is
designed to match key characteristics (e.g., energy efficiency)
of the spring loaded invert pendulum model (SLIP), which
is well-known as the low-dimensional representation of both
human and animal locomotion.22,23 To this end, the SLIP
model is naturally utilized as the reference model for designing
the parameters of ECWF, i.e., human-inspired controllers
through a corresponding optimization problem. As a result of
the formal procedure for designing multi-contact bipedal lo-
comotion gaits, we are able to achieve both human-like multi-
contact walking on AMBER2 and SLIP-like multi-contact
walking on ATRIAS in both simulation and experiment.

The structure of this paper is as follows: Sec. II presents the
analysis of multi-domain locomotion of both human and the
low dimensional representation SLIP model. A hybrid system
is developed in Sec. III to represent the multi-domain bipedal
locomotion system in a general form. The constructions of
the human-inspired controllers and the multi-domain optimiza-
tion are explained in Sec. IV and Sec. V, respectively. In
addition, both AMBER2 and ATRIAS are discussed side-by-
side throughout the paper to motivate the concepts presented.
Experimental realization on both AMBER2 and ATRIAS are
illustrated in Sec. VI, showing that the formal results can
be translated to physical robots successfully. Finally, the
discussion and conclusion are presented in Sec. VII.

II. MULTI-DOMAIN LOCOMOTION
Since the results presented in this paper are inspired by

human locomotion, this section carefully reviews the multi-
domain aspects of the human gait—a characteristic that is
intrinsic to human locomotion. Based upon experimental hu-
man data and the corresponding kinematics, three domains
are extracted and utilized to characterize one step cycle of
human walking. To demonstrate that these observations can be
applied beyond the human locomotion, we also explore SLIP-
like locomotion and its corresponding multi-domain behavior.
In particular, two domains of single/double support phases
are considered for the multi-domain SLIP-like locomotion
considered in this paper.
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Fig. 3: The three domains represent the predominant discrete
domains present in human locomotion over the a step course.

A. Multi-Domain Structure of Human Walking

Understanding the walking pattern of a normal leg is of
obvious importance when attempting to reproduce it in robots.
A human walking gait nominally consists of two phases:
stance phase, when the foot is on the ground, and swing
phase, when the foot is in the air.24 Sub-phases are usually
extracted from each phase to describe human locomotion more
explicitly. At the highest level, we divide the walking gait into
two phases consisting of a single support phase in which only
one foot is in contact with the ground and double support in
which both feet are in contact with the walking surface as
depicted in Fig. 1.2 Though different approaches have been
applied to break one step into different phases (for example,
in impedance prosthetic control,25 the single support phase is
divided into two sub-phases based on the flexion and extension
of the swing knee angle), this paper breaks each step into
different distinct phases based upon the points on the feet that
are in contact with the ground.

Locomotion Domain Breakdown. With the goal of utilizing
human data to construct robotic walking gaits, we consider
the human locomotion data obtained through a high speed
motion capture system (details can be found in18). Using the
domain breakdown strategy discussed in,18 one step is divided
into four sub-phases with specific contact point configurations
as shown in Fig. 2. In particular, one can note that there
is one sub-phase that only takes 3.1746% of one step, to
be more specific, the phase in which the front foot is flat
and the back foot has only the toe in contact with the
walking surface. Due to its short duration, omission of this
phase simplifies control construction but without sacrificing
the essential domain structure present in human locomotion.
Therefore, this work will focus on the other three domains of
a single step as shown in Fig. 3.

Example 1. AMBER2 (A & M Bipedal Experimental Robot),
a 2D footed bipedal robot with seven links, was custom built
by the authors (in collaboration with the rest of AMBER Lab)
with the specific goal of multi-contact locomotion as indicated
by the novel design of the feet(as shown in Fig. 4). The

Fig. 4: Bipedal robots AMBER2 (left) and ATRIAS (right).

six joints of AMBER2 are actuated by brushless DC motors.
Therefore, when the robot stands on the stance toe only, there
is one degree of freedom that is not actuated. As a planar robot,
the motion of AMBER2 has been restricted to the sagittal
plane via a boom, which is configured as a parallel four-bar
link mechanism such that no support in the sagittal plan is
provided by the boom.19 The boom is fixed rigidly to a low
friction rotating mechanism, which allows the biped to walk
in a circular fashion. In addition, counterweights are provided
to negate the weight of the boom on the robot; importantly,
the weight of the robot is not supported by the boom.

B. Multi-Domain of SLIP Model

The Spring Loaded Inverted Pendulum (SLIP) model pro-
vides a low-dimensional representation of locomotion by uti-
lizing an energy-conserving spring mass model. As such, it can
provide an approach for generating efficient gaits on bipedal
robots.26,27,28,29 The spring-mass model consists of a point
mass m supported by two massless linear spring legs with
fixed rest length r0 and stiffness k. The spring forces only
act on the mass while in contact with the ground and cannot
apply forces during swing. Letting pcom be the position of the
point mass with respect to a fixed origin, the dynamics of the
SLIP model is given as follows:

p̈com =
1

m
(FR(pcom) + FL(pcom))− ge, (1)

where FR and FL are the spring forces of the legs and ge is
the gravitational vector.

The SLIP walking model consists of two different dynami-
cal phases: single support and double support, identified by the
contact constraints of the system. A stable walking gait can
be obtained by selecting a proper “touch down” angle, αTD,
as shown in Fig. 5. Since the legs are assumed to be massless
and the only control input (touchdown angle) does not require
any net actuator work, the system conserves energy.

In this paper, we use model parameters that roughly ap-
proximate the low-dimensional dynamics of ATRIAS. Stable
walking gaits for the given parameters are generated by
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Fig. 5: The Spring Loaded Inverted Pendulum Walking Gait.

utilizing the method introduced in,29 and the desired “touch
down” angles are determined correspondingly.

Example 2. ATRIAS (Assume The Robot Is A Sphere),
as shown in Fig. 4, is a 3D capable, human-scale, bipedal
robot conceived and implemented at the Oregon State Uni-
versity Dynamic Robotics Laboratory. Designed to match
key characteristics of the SLIP model, ATRIAS uses large
springs in series with actuators to drive lightweight four-
bar mechanisms on each leg which terminates in point foot.
This enables ATRIAS to achieve agile, efficient and highly
dynamic maneuvers. Two brushless DC motors for each leg
are mounted at the hip joint to match the SLIP model feature
of concentration of robot mass. These motors drive the upper
two members of the four-bar leg through a large series spring.
For the current work, a support boom is used to constrain
torso rotation and translation to the sagittal plane, effectively
planarizing the dynamics (detailed description of the robot is
presented in30).

III. MULTI-DOMAIN HYBRID SYSTEM

By considering the changes in contact points over a gait
cycle, this section presents a hybrid system model, consisting
of both continuous and discrete dynamics, as the mathematical
means to capture the essential dynamics of multi-domain
locomotion. To make the discussion explicit, the hybrid sys-
tems representing the two robots: AMBER2 and ATRIAS are
developed side-by-side.

A. Hybrid System Model

Multi-domain robotic locomotion can be formally modeled
as a hybrid control system,31,32 which is given by the following
tuple:

H C = (Γ, D, S,∆, FG), (2)

where
• Γ = (V,E) is a directed circle graph, with vertices V =
{v1, v2, ..., vN}; and edges E = {e1, e2, ..., eN}, where
N is the number of the total domains. ei denotes the
transition from the source domain sor(ei) to the target
domain tar(ei): vi → vi+1 if i < N and vN → v1 if
i = N .

• D = {Dv}v∈V is a set of domains of admissibility, where
Dv ⊆ X × U with X ⊆ R2n the state space set and
U ⊆ Rmr the set of admissible controls,

Fig. 6: The directed graph of 3 domain walking.

• S = {Se}e∈E is a set of guards with Se ⊆ Dtar(e),
• ∆ = {∆e}e∈E is a set of reset maps, where ∆e : X → X

is a smooth map,
• FG = {(fv, gv)}v∈V with (fv, gv) a control system on
Dv , i.e., ẋ = fv(x) + gv(x)u with x ∈ X , u ∈ U and
{x, u} ∈ Dv .

Correspondingly, a hybrid system is a hybrid control system
with U = ∅, e.g., after any feedback controllers have been
applied, making the system closed-loop. In this case,

H = (Γ, DX , SX ,∆, FX), (3)

where DX = {DX
v }v∈V is the set of domains with DX

v ⊂ X
being a smooth subset of only X . Similarly, SX = {SXe }e∈E
is the set of guards with SXe ⊆ DX

tar(e), and FX = {fXv }v∈V
is a set of dynamical systems on X , i.e., ẋ = fXv (x) with
x ∈ DX

v .

Remark 1. Motivated by the desire to be able to discuss the
multi-contact locomotion in the context of hybrid system in a
general fashion, we label the domains explicitly based on the
major impact1 in this work. Therefore, for the multi-domain
walking gait of interest (with number of domains less or equal
than 3, i.e., N ≤ 3), the vertices of the directed graph Γ are
specifically defined as:

V = {v+, vi, v−}, (4)

where +, i and − represent post-impact, intermediate and
pre-impact, respectively. The edges are defined to be the
transitions of interest. For example, edge ei+ denotes the
transition from the post-impact domain to the intermediate
domain. For multi-domain locomotion with only two domains,
the intermediate domain will be dropped for simplicity of
notation. In particular, the directed graph Γ for multi-domain
locomotion will always start with v+ and end with v−. Note

1It is possible that for a particular multi-domain hybrid system, there may
be more than one impact. However, it is often the case that certain impact
may be considered “soft” impact, thus not imparting a large impulse to the
system. Toe strike for example could be considered a soft impact since the
toe does not generally impact the ground with a considerable velocity. Heel
strike, however, can have a large effect on the system and is not generally
ignored. Therefore, it is considered the major impact.
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Fig. 7: The directed graph of single/double support domain.

that assuming that the number of domains is less than or equal
to 3 is a reasonable assumption for bipedal locomotion for
most cases (especially given the analysis of human locomotion
data given in Sect. II). That being said, the work presented in
this paper is applicable to walking with any number of discrete
domains through straightforward extensions.

Example 3. For the multi-domain locomotion of AMBER2,
the hybrid control system can be defined as:

H CR = (ΓR, DR, SR,∆R, FGR), (5)

where the subscript R comes from the last letter of AMBER.
The corresponding hybrid system can be defined as:

HR = (ΓR, D
X
R , S

X
R ,∆R, F

X
R ). (6)

As motivated by the discrete domains found in human loco-
motion (as discussed in Ex. 1), the directed graph ΓR with
three vertices and edges will be considered as follows:

VR={v+, vi, v−}, (7)

ER={ei+ = (v+→ vi), e−i = (vi→ v−), e+− = (v−→ v+)}.

The corresponding discrete domain structure for AMBER2 is
shown in Fig. 6. Additionally, the major impact happens when
the swing heel strikes the ground.

Example 4. In a manner analogous to AMBER2, the hybrid
control system of the multi-domain locomotion of ATRIAS
will be defined to be:

H C S = (ΓS , DS , SS ,∆S , FGS), (8)

where the subscript comes from the last letter of ATRIAS. The
corresponding hybrid system can be defined as:

HS = (ΓS , D
X
S , S

X
S ,∆S , F

X
S ). (9)

Due to the fact that ATRIAS has point feet, two discrete
domains are considered: single and double support. As a result,
the vertices and edges of the directed graph, as shown in Fig. 7,
are defined to be:

VS = {v+, v−},
ES = {e−+ = (v+ → v−), e+− = (v− → v+)}.

(10)

In particular, double support is considered as post-impact
domain and single support is defined as pre-impact domain.
Toe strike, the only impact, is thus the major impact of the
SLIP-like multi-domain hybrid system.

-θ1ns -θ2nsθ2s θ1s

x

z

(px, pz)

(px, pz)

Fig. 8: Coordinates of AMBER2 (left) and ATRIAS (right).

B. Coordinates, Constraints and Actuation Types

To explicitly construct the hybrid system corresponding
to multi-domain locomotion, the basic concepts related to
coordinates, constraints and actuation types are introduced in
a general form.
Coordinates. Due to the changes of contact points between
the robot and the walking surface throughout the course of
a gait, generalized coordinates for the unpinned model are
utilized. Specifically, for a planar robot, the configuration
space Q = R2×SO(2)×Qb is represented in the generalized
coordinates as θ = {θe, θb}T with the extended coordinates
θe = {px, pz, ϕ0} representing the positions and rotation
angle of the body fixed frame Rb with respect to a fixed
inertial frame R0; and θb denoting the body coordinates,
which are the relative joint angles of the robot. With n
denoting the general degrees of freedom of the unconstrained
robot, the state space of the model is denoted accordingly as
X := {x = (θ; θ̇)|θ ∈ Q, θ̇ ∈ Rn}.
Contact Conditions. With a given vertex v ∈ V , the do-
main Dv , which describes the admissible configuration of
the system, is restricted by the constraints associated with
specific contact points interacting with the walking surface. In
particular, holonomic constraints, denoted as ιv , are used to
ensure that the points on the robot in contact with the ground
remain in contact. Alternatively, unilateral constraints, denoted
by hv , points on the robot that can impact the ground or are
used to calculate reaction forces at points that can lift from
the ground.
Actuation Types. With the notions of coordinates and con-
straints, we can explicitly define full, over and under actua-
tion. Let mr denote the number of actuators on the robot—
therefore, the general control set can be taken as U =
{u|u ∈ Rmr}—and nιv represent the number of holonomic
constraints, we say that a domain is,
• Fully-actuated (fa), if mr = n− nιv ,
• Under-actuated (ua), if mr < n− nιv ,
• Over-actuated (oa), if mr > n− nιv .

Note that these actuation types can characterize all the types of
actuation present in locomotion, i.e., ∀v ∈ V, v ∈ {fa,ua, oa}.
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Example 5. For the coordinates of the planar robot AMBER2,
the body fixed frame is located at the position of the stance
toe. Therefore, {px, pz} denote the x and z positions of the
stance toe w.r.t the ground frame, respectively; ϕ0 is the pitch
angle measured from the walking surface to the foot; and
θb = {θsa, θsk, θsh, θnsh, θnsk, θnsa} as shown in Fig. 8. In
the context of the multi-domain walking gait of interest, the
constraints and actuation types of each domain of AMBER2
can be defined explicitly as shown in Fig. 3, the details of
which are omitted here and can be found in.21

Example 6. The generalized coordinates of ATRIAS are
defined as follows: with the body fixed frame being located at
the terminal of the stance foot, the extended coordinates are
denoted by the position term {px, pz} and the body pitch angle
ϕT as θe = {px, pz, ϕT }. The coordinates of rigid part of the
robot, θb = {θ1s, θ2s, θ1ns, θ2ns}, and the corresponding mo-
tor coordinates, θm = {θm1s, θm2s, θm1ns, θm2ns}, together
form the body coordinates of the model, as shown in Fig. 8.
Therefore the configuration space Q is given in the generalized
coordinates as:26

θ = {θe, θb, θm}T . (11)

Note that, due to the existence of the series compliance, the
sum of the number of actuators and the constrained degrees
of freedom is always smaller than the general degrees of
freedom n. That is, the robot is always under-actuated during
both domains. The constraints for each domain of ATRIAS ,
therefore can be defined explicitly, which can be found in.26

C. Robot Dynamics

With the generalized coordinates and contact constraints in
hand, we now construct the continuous control system FG for
each domain Dv of the hybrid control system H C .
Continuous Dynamics. Given the mass and inertia properties
of each link of a specific robot (typically obtained via a
CAD model or system identification method), the continuous
dynamics can be constructed using the Euler-Lagrangian equa-
tions.33 Holonomic constraints are then added to enforce the
contact conditions (additional details can be found in34). The
end result is a constrained dynamical system:

M(θ)θ̈ +H(θ, θ̇) = Bvu+ Jv(θ)
TFv(θ, θ̇, u), (12)

Jv(θ)θ̈ + J̇v(θ)θ̇ = 0, (13)

where M(θ) ∈ Rn×n is the inertial matrix, and H(θ, θ̇) =
C(θ, θ̇)θ̇+G(θ) ∈ Rn×1 contains the terms resulting from the
centripetal Coriolis effect C(θ, θ̇)θ̇ and the gravity term G(θ).
Bv ∈ Rn×mr denotes the torque distribution matrix and u ∈ U
is the input torque vector. Fv(θ, θ̇, u) is a vector containing a
contact wrench for each point on the robot in contact with
the walking surface and Jv(θ) is the corresponding Jacobian
matrix of the holonomic constraints, i.e., the contact points of
a particular domain. To be more specific, the elements of the
Jacobian matrix are the first-order partial derivatives of the
generalized position vector (including both the translational
position and the planar rotation) of the contact points in that
domain v. Fv can be explicitly derived from the states x and

the controller u by substituting the holonomic constraints as
shown in (13) into (12), which yields:

Fv(θ, θ̇, u) =− (Jv(θ)M(θ)−1Jv(θ)
T )−1(J̇v(θ, θ̇)θ̇+ (14)

Jv(θ)M(θ)−1(Bvu−H(θ, θ̇))).

The detailed derivation is omitted here and can be found in.33

Converting the equations of motion to a first order ODE
yields the affine control system (fv, gv), which can be written
in coordinates in the following form: ẋ = fv(x) + gv(x)u
(see35 for details).

Discrete Dynamics. Due to the presence of impacts and the
varying nature of the contact points throughout a gait cycle,
we have to carefully consider the modeling of domains Dv ,
guards Se, and reset maps ∆e, for a hybrid system given in (2).
These elements of a multi-domain hybrid system model will
be explicitly constructed using the unilateral and holonomic
constraints as defined above.

Given a vertex v ∈ V , the continuous domain is the set
of admissible configurations of the system factoring in both
normal reaction forces and a unilateral constraint. Specifically,
from the wrench Fv(θ, θ̇, u), one can ensure that the foot is
both in contact with the ground and no slipping by considering
inequalities in the form: RTv Fv(θ, θ̇, u) ≥ 0 with RTv defined
as coefficients of the normal reaction forces and the static
friction conditions for domain Dv . For example, with only one
contact point, RT can be defined as [0, 1;−1, µ], where µ is
the static friction coefficient (see36 for more details). These
are coupled with the unilateral constraint on this domain,
hv(θ, θ̇, u), yielding the set of admissible configurations:

Av(θ, θ̇, u) =

[
RTv Fv(θ, θ̇, u)

hv(θ, θ̇, u)

]
≥ 0. (15)

With this setup, the domains and guards are thus given as:

Dv = {(θ, θ̇, u) ∈ X × U : Av(θ, θ̇, u) ≥ 0}, (16)

Se = {(θ, θ̇, u) ∈ X × U : hv = 0 and ḣv < 0}. (17)

In particular, the guard is the boundary of this domain with the
additional condition that the unilateral constraint is decreasing.

The impact equations are given by considering the holo-
nomic constraints enforced on the subsequent domain. In
particular, the post-impact velocity θ̇+ is given in terms of the
pre-impact velocity θ̇−. Note that as a result of considering
“stance” and “non-stance” legs, the labeling on the legs must
be switched during one of the transitions, which occurs at
major impact. This is a common “trick” in robotic walking
used to reduce the number of discrete domains. With this, the
reset map is given by,

∆e(θ, θ̇) =

[
∆θ,eθ

∆θ̇,e(θ)θ̇

]
. (18)

To be more explicit, ∆θ,e, = ∆θ̇,e(θ) = In×n for the smooth
transitions, i.e., transitions without relabeling or impact. For
the transition with impact which is also the moment when the
relabeling should be considered, ∆θ,e is the relabeling matrix
and ∆θ̇,e(θ) is impact reset map. Note that, the impact reset
map is computed assuming perfectly plastic (i.e., inelastic)
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impacts, which is a common practice in the bipedal research
literature.16,34,46 In particular, the velocity of the swing foot
is assumed to be zero (no rebound or slipping) after impacts
and there is no instantaneous change in the configuration.45

Example 7. With the coordinates and constraints of AMBER2
defined in Ex. 5, the continuous dynamics, domains Dv ,
guards Se and reset maps ∆e for AMBER2 can be configured
explicitly according to the discussion above. Note that, in
order to capture the actual behavior of the physical system,
the mathematical model of AMBER2 also contains the inertial
modeling of the motors and the boom; the detailed derivation
can be found in.21

Example 8. For ATRIAS, the domains Dv , guards Se and
reset maps ∆e can be configured correspondingly with the
framework discussed above. Considering the existence of
spring dynamics in ATRIAS, the control system (fv, gv) can
be obtained from the Lagrangian dynamics of a n-DOF robot
with series compliant actuators:38

D(θz)θ̈z+H(θz, θ̇z)−Bspτsp(θb, θm, θ̇b, θ̇m)=Jv(θz)
TFv, (19)

Jmθ̈m + τsp(θb, θm, θ̇b, θ̇m)= Bmu, (20)

Jv(θz)θ̈z + J̇v(θz)θ̇z= 0, (21)

where θz = {θe, θb}T is the coordinates of the rigid body
system without series springs, D(θz) and H(θz, θ̇z) are the
inertial matrix and the sum of the Coriolis effect and the
gravity vector of the rigid body dynamics, Jm is the motor
inertia, u ∈ US is the control input of motors, Bm ∈ R4×4 is
the motor torques distribution matrix, Jv(θz) is the Jacobian
of the holonomic constraints defined for each domain and Fv
is the vector of reaction forces acting on the contact point
that can be computed in terms of state variables and control
inputs.34. Also, Bsp ∈ R7×4 is the spring force distribution
matrix, and τsp(θb, θm, θ̇b, θ̇m) is the vector of spring forces.
The detailed derivation of the control system for each domain
{fv, gv} has been shown in the author’s previous work.26

IV. HUMAN-INSPIRED CONTROLLER

This section extends the traditional framework of the
human-inspired control in31,35 to the multi-contact case. The
canonical walking function is proposed to characterize the
multi-domain locomotion in a unified form, based on which,
a human-inspired controller is constructed explicitly for the
automatic generation of multi-domain walking gaits.

A. Control Output of Locomotion System

Consider the continuous system with the specific outputs
defined on each domain Dv as given by:

ẋ = fv(x) + gv(x)u,

yv = yav (x)− ydv(x),
(22)

with yv the control outputs for v ∈ V , consisting of the
differences between the actual outputs, yav (x), and the desired
value for these outputs, ydv(x). The human-inspired control
design process consists of determining the proper choice of
actual and desired outputs, along with the construction of a

control law u that drives yav (x)→ ydv(x) such that the resulting
hybrid system obtained by applying this control law has a
periodic orbit, i.e., a stable walking gait.

B. Human Locomotion Outputs

Motivated by the goal of achieving human-like robotic
walking,24 the actual human outputs are extracted from the
human locomotion data to represent the locomotion patterns of
a human throughout a step with the goal of control synthesis.
In particular, we formally define a human output combination
as follows:31

Definition 1. A human output combination for v ∈ V is
a tuple Y Hv = (Q, yH1,v, y

H
2,v) consisting of a configuration

space Q, velocity-modulating outputs yH1,v : Q → Rn1,v

and position-modulating outputs yH2,v : Q → Rmv−n1,v with
n1,v the number of velocity-modulating outputs and mv the
available degrees of actuation. Specifically, n1,v = 1 for
v ∈ {Vfa, Voa} and n1,v = 0 for v ∈ Vua. Let Ov be an
index set for yH2,v whereby yH2,v(θ) = [yH2,v(θ)o]o∈Ov

.

A human output combination is independent if

rank(

[
yH1,v(θ)
yH2,v(θ)

]
) = mv, (23)

on Qb; and linear if

yH1,v(θ) = cvθ, (24)

yH2,v(θ) = Hvθ, (25)

for cv ∈ Rn1,v×n and Hv ∈ R(mv−n1,v)×n. Note that this
definition is not limited to the human locomotion data, but
can also be applied to different types of reference output
data, e.g., one can consider a SLIP model output combination.
The following two examples illustrate the outputs selection of
both the human-like model AMBER2 and the SLIP-like model
ATRIAS.

Example 9. Investigation of human locomotion data reveals
that seven linear independent outputs can be chosen as can-
didates to characterize the human-like model of AMBER2:21

δphip(θ), the linearized forward position of the hip measured
from the stance ankle joint; θsa, the stance ankle angle; θsk,
the stance knee angle; θnsk, the non-stance knee angle; θhip,
the hip angle between two thighs; θtor(θ), the torso angle
measured from the vertical, and θnsf (θ), the angle of the non-
stance foot w.r.t the horizontal. Additional details, along with
these outputs as calculated from experimental human walking
data, can be found in.18,31

Specifically, the linearized hip position is utilized as the
velocity-modulating output and is characterized by cv . Since
the pre-impact domain v− ∈ Vua, only the post-impact and
intermediate domain have the velocity-modulating output. The
remaining six position-modulating outputs can be written in
the matrix form Hv− . Note that, the explicit expressions of
cv and Hv− of AMBER2 are omitted here for simplicity and
can be found in.21 The motivation for using the notation Hv−

is that the position-modulating output combination is also
the output combination for the pre-impact (under-actuated)
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domain for AMBER2. The position-modulating outputs for the
post-impact and intermediate domains are chosen to be sub-
matrices of Hv− based upon the available degrees of actuation
in each of these domains. In particular, Hv+ = (Hv−)1,2,5,6
and Hvi = (Hv−)2−6, where we use the notation (Hv−)i to
denote the ith row of Hv− .

Example 10. As discussed in Sec. II-B for ATRIAS, the center
of mass trajectories are the natural choice for representing the
reduced order SLIP model. However, for the full-order robotic
system, the complex nonlinear expression for the center of
mass position will significantly increase the complexity of the
controller. Therefore, we instead consider a linear combination
of state variables that approximately characterize the simple
SLIP model dynamics. In particular, the following collection
of outputs, first proposed in Eq. (14) of,39 yields such a
representation:
• Virtual stance leg angle: θsl :=

(
θm2s+θm1s

2

)
,

• Virtual non-stance leg angle: θnsl :=
(
θm2ns+θm1ns

2

)
,

• Angle of the stance knee: θsk := (θm2s − θm1s),
• Non-stance knee angle: θnsk := (θm2ns − θm1ns),

where the virtual leg angles characterize the forward motion
of the legs and the knee angles determine the corresponding
leg lengths. Note that we use motor angles instead of joint
angles due to the following considerations: (1) motor angles
are directly controlled, therefore we can track them more pre-
cisely, and (2) assuming small spring deflections, motor angles
are good approximations of the joint angles in the context
of calculating center of mass position. This observation will
facilitate the construction of the gait generation optimization
problem utilizing the SLIP model as a reference.

With the motivation to formalize the output combination
according to Def. 1, the linearized hip position (defined as cv)
is chosen as the velocity-modulating output for both domains
and used as the parameterization of time for the feedback
controller. Due to the presence of elasticity in ATRIAS, the
robot is under-actuated in both single support and double
support domain. Hence, in contrast to the constructions for
AMBER2, we define the same combination of position-
modulating outputs for both single and double domains of
ATRIAS. Those outputs can be characterized by the matrix
Hv followed by the previous definition of outputs. The detailed
expression of cv and Hv for ATRIAS is omitted here and can
be found in.26 The end result is a set of outputs for which the
corresponding feedback control law is implemented via the
human-inspired controller that will be introduced in Sec. IV-D.

C. Robotic Human-Inspired Outputs

With the actual human locomotion outputs in hand, the next
step is to search for specific walking functions to characterize
the behavior of the human locomotion, while with the hope
that the fundamental mechanisms underlying human walking
can be discovered, simplified and exploited to achieve robust
walking in bipedal robots.
Extended Canonical Walking Function. Previous work re-
veal that the actual human outputs considered for various
types of locomotion (flat-ground walking35 and running40)

can be characterized by a simple function characterizing the
solution to a linear spring-mass-damper system, which we
termed the canonical walking function (CWF). That is, the
human locomotion system appears to display simple behavior
when locomoting in a periodic fashion. In addition, studying
human locomotion data for more complex locomotion types,
e.g., stair climbing41 and rough terrain walking,18 the actual
human outputs can be characterized by a natural extension to
the canonical walking function consisting of a linear mass-
spring-damper system subject to sinusoidal excitation. Further
justification of these concepts can be found in.18

In this work, it is found that the actual multi-domain
human locomotion outputs for a complete step cycle can be
characterized by this extended function, which we term the
extended canonical walking function (ECWF):

yecwf (t) = e−α4t(α1 cos(α2t) + α3 sin(α2t)) + ...

α5 cos(α6t) + κ(α) sin(α6t) + α7, (26)

where κ(α) = (2α4α5α6/((α2)2+(α4)2+(α6)2). Analysis of
the chosen position-modulating human outputs shows that this
function can fit the human locomotion data with high correla-
tion, i.e., multi-domain human locomotion can be accurately
represented by this simple function.

Parameterization of Time. Noted for the study of the selected
human outputs, the linearized forward hip position can be
approximated by a linear function of time δphip(t) = vhipt
throughout a single step; therefore, this is chosen to be the
desired behavior for the velocity modulating output. Through
this observation, and with the goal of controlling the velocity
of the robot, we define the following relative degree one
output:

ya1,v(θ, θ̇)=ẏ
H
1,v(θ, θ̇)=dy

H
1,v(θ)θ̇, yd1,v(α)=vhip. (27)

To define the actual and desired outputs for the position
modulating outputs, we begin by noting that—due to the
lineararity of the hip velocity —we can parameterize time in
the following fashion:

τ(θ) = (δphip(θ)− δphip(θ+))/vhip, (28)

which removes the dependence of time in (26) and renders an
autonomous ECWF that only depends on the states.37 Note
that, θ+ represents the robot configuration at the beginning of
one step. Therefore, the desired outputs yd2 can be stated as:

yd2,v(τ(θ), αv) := [yecwf (τ(θ), αv)o]o∈Ov
. (29)

Correspondingly, the actual outputs can be obtained through
the position-modulating outputs as:

ya2,v = yH2,v(θ) = Hvθ. (30)

Robotic Human-Inspired Outputs. With the autonomous
ECWF in hand, we formally define the robotic human-inspired
outputs for the robot as:

yv(θ, θ̇, αv)=

[
y1,v(θ, θ̇, αv)
y2,v(θ, αv)

]
=

[
ya1,v(θ, θ̇)−yd1,v(αv)

ya2,v(θ)−yd2,v(τ(θ), αv)

]
, (31)

where y1,v(θ, θ̇, αv) and y2,v(θ, αv) are the relative degree one
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and relative degree two outputs, respectively.
The parameter set α is the grouped parameters of all the

outputs consisting of both the relative degree one output
and relative degree two outputs for a complete step cycle.
Particularly, based on the actuation type in each domain v, the
corresponding components αv of α will be utilized to define
the human-inspired outputs via (26) and (27). Note that, for
a specific output, the parameters will be kept unchanged for
all the domains during one step cycle , i.e., only one set of
parameters α is used to characterize an entire step.

D. Control Law Construction

The goal of the controller is to drive the outputs of robot
to the outputs of human (or other reference trajectories of
interest, e.g., SLIP-based trajectories) as represented by the
ECWF in each domain. Due to the fact that the dynamics of
robotic systems are highly nonlinear, input/output linearization
is a natural choice of control methodology to drive yαv,v → 0
in an exponential fashion. In particular, in the domains of full-
and over- actuation, we define the controller as:

uεv(θ, θ̇, αv) = −A−1v (θ, θ̇, αv)

([
0

L2
fv
y2,v(θ, θ̇, αv)

]
+

[
Lfvy1,v(θ, θ̇, αv)

2εLfvy2,v(θ, θ̇, αv)

]
+

[
εy1,v(θ, θ̇, αv)

ε2y2,v(θ, θ̇, αv)

])
, (32)

with v ∈ {fa, oa} and L the Lie derivative.42 Note that, ε > 0
is a user defined control gain that determines the convergence
rate of yαv,v → 0. The decoupling matrix Av(θ, θ̇, αv) is given
as:

Av(θ, θ̇, αv) =

[
Lgvy1,v(θ, θ̇, αv)

LgvLfvy2,v(θ, θ̇, αv)

]
, (33)

which is nonsingular because of a linear and independent
output combination was chosen.

For the under-actuated domain, the controller is defined as:

uεua(θ, θ̇, αua) = −A−1ua (θ, θ̇, αv)
(
L2
fua
y2,ua(θ, θ̇, αv)

+2εLfuay2,ua(θ, θ̇, αv) + ε2y2,ua(θ, θ̇, αv)
)
, (34)

with Aua(θ, θ̇, αv) = Lgua
Lfua

y2,ua(θ, θ̇, αv).
With the feedback control laws (32) and (34) in hand, the

next step is to find such a parameter set α that a hybrid periodic
orbit can be obtained for the multi-domain locomotion system.
Guided by this objective , an optimization problem that yields
the parameter set α will be presented in the next section.

Example 11. As discussed in Ex. 9, the general position-
modulating outputs (i.e., relative degree two outputs) com-
bination is also the outputs combination for the pre-impact
domain for AMBER2, therefore, we use the notation αv−
to represent the generalized position-modulating outputs for
simplicity. With the actual human outputs chosen above,
the generalized position-modulating human-inspired outputs
y2,v−(θ, αv−) = ya2,v−(θ)− yd2,v−(τ(θ), αv−) with ya2,v−(θ)=

Hv−θ and yd2,v− = [yecwf (τ(θ), αv−)o]o∈Ov− , where Ov− =
{sa, sk, nsk, hip, tor, nsf}.

The parameter set can be obtained as α = {vhip, αv−} ∈
R43 with αv− = {αsa, αsk, αnsk, αhip, αtor, αnsf}. By defin-
ing αvhip

= {vhip, 0, 0, 0, 0, 0, 0} ∈ R7, the vector compo-
nents of α can be stacked in matrix form with α ∈ R7×7.
Because the actuation type in each domain is different, the
parameter set matrix for specific domain will be the sub-
row matrices of α. In particular, αv+ = α([1− 3, 6, 7], :),
αvi =α([1, 3−7], :) and αv− = α([2−7], :).

Consequently, with the human-inspired outputs defined
above, the human-inspired controllers can be constructed ac-
cording to (32) for the post-impact and intermediate domains
and (34) for the pre-impact domain.

Example 12. For ATRIAS, we define the the relative de-
gree two actual outputs ya2,v(θ) = Hvθ and desired out-
puts yd2,v(τ, αv) = [yecwf (τ(θ), αv)o]o∈Ov

, where Ov =
{sl, nsl, sk, nsk}. Importantly, because the parameters for
each output are exactly the same on both single support
and double support domain, i.e., αv+ = αv− = α, the
corresponding controller can easily be implemented on the
real robot. In particular, due to the fact that the robot is
under-actuated on both domains, the controllers for the affine
control system for each domain can be determined from (34)
explicitly.

V. MULTI-DOMAIN OPTIMIZATION

This section will focus on developing of an optimization
problem that yields the parameter set α which will result in
stable multi-domain robotic locomotion. Multi-domain partial
hybrid zero dynamics (PHZD) constraints are introduced to
insure the partial zero dynamics are invariant through all the
discrete transitions; the end result is a formal guarantee that
there is a periodic orbit for the complete system if the partial
zero dynamics have a stable limit cycle. With the objective cost
function being the least squares fit of the robot outputs to the
corresponding outputs computed from human locomotion data,
the goal is to find the parameter set α that yields a human-like
multi-domain locomotion gait with guaranteed stability while
simultaneously being physically realizable.

A. Partial Hybrid Zero Dynamics

Before revealing the optimization problem that will yield
stable multi-contact walking gaits, it is necessary to introduce
several constructions that are fundamental to its formulation.
Zero Dynamics. For under-actuated locomotion, the goal
of the human-inspired control laws is to drive the relative
degree two outputs y(θ) → 0 exponentially. In other words,
the control objective is to drive the system dynamics to a
parameterized smooth surface exponentially, termed the zero
dynamic surface Z, which is defined as the following:

Z = {(θ, θ̇) ∈ X : y(θ) = 0, Lfy(θ, θ̇) = 0}. (35)

There are several advantages of studying this reduced order
(or restricted) dynamics instead of the full order dynamics.
For example, with less degrees of freedom, the controller
design computation time which usually involves dynamics
integration, can be reduced significantly (more details in26,37).
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In particular, we begin by considering the generalized under-
actuated affine control system (22), and it assumes can be
represented in the zero dynamics normal form as:42

η̇ = b(η, ξ) + a(η, ξ)u, (36)

ξ̇ = q(η, ξ), (37)

where η represent the controlled normal states and ξ ∈ Z
are the uncontrolled states for the zero dynamics surface. The
vector fields b, a, and q are assumed to be locally Lipschitz
continuous. In addition, we assume that b(0, ξ) = 0, so that
the zero dynamics surface Z (with y(θ) = η) defined by η = 0
with dynamics

ξ̇ = q(0, ξ), (38)

is invariant.43

Partial Hybrid Zero Dynamics. The above construction is
for the general under-actuated single-domain system. Con-
sidering the multi-domain hybrid zero dynamics with full-
and over- actuation domains that includes relative degree one
output, enforcing this invariance through impact is a strong
condition that limits the behaviors of the robots. Therefore,
with a view towards the importance of the relative degree
two outputs y2,v(θ, αv), we consider the zero dynamics by
defining y(θ) = y2,v(θ, αv), which we termed the partial zero
dynamics surface2:

PZαv
={(θ, θ̇)∈DX

v :y2,v(θ,αv)=0, Lfvy2,v(θ, θ̇, αv)=0}. (39)

Through the exclusion of the relative degree one output in
the zero dynamics, the partial zero dynamics surface PZαv

can be specifically designed such that it is invariant for a
hybrid system with multiple domains. In other words, the goal
of considering the PHZD is to find the parameter set α to
ensure that the zero dynamic systems remain on the surfaces
through all of the discrete transitions present in the multi-
domain walking. Formally stated, the hybrid control system in
(2) with the directed graph defined as in (4) and the human-
inspired controller defined as in (32) and (34) , has PHZD
if:

∆e(Se ∩PZαsor(e)
) ⊂ PZαtar(e)

, (40)

for each transition e ∈ E. Therefore, in the case of AMBER2
with three transitions, i.e., e ∈ ER, three sets of PHZD con-
straints have to be constructed. For the case of ATRIAS with
two transitions, i.e., e ∈ ES , two sets of PHZD constraints
have to be developed correspondingly. A visual representation
of the geometry of these constraints for the case of AMBER2
is illustrated explicitly in Fig. 9.

Note that, the formula in (36) and (37) is explicitly defined
for domains with under-actuation. For the cases of full- and
over- actuation, the outputs yv(θ, θ̇, αv) can be separated into
relative degree one outputs y1,v(θ, θ̇, αv) and relative degree

2Note that, the reason we term this dynamics as partial zero dynamics is
because the real zero dynamics also includes the relative degree one outputs
for the full- and over- actuation domains. For the under-actuated domain that
only has relative degree two outputs, the PZαv surface is actually the full
zero dynamic surface, i.e., PZαua := Zua. For notation simplicity, in this
work, PZαv is adopted for both situations.

two outputs y2,v(θ, αv). Having the relative degree two outputs
converged to 0, which is defined as the partial zero dynamics
surface, we could explicitly define the relative degree one
output as ξv satisfying (37) with applying a pre-feedback
controller. That is to say, because of the full control authority,
we could carefully shape the dynamics of relative degree one
outputs to the form of (37), which can be reasonably viewed
as a “controllable” zero dynamics. A detailed example can
be seen in the section of PHZD reconstruction as in (42).
This discussion is important because it allows the general
construction of the zero dynamics as in (36) and (37) to suit for
all domains with different types of actuation, which, therefore,
form the framework for later discussion.

PHZD Reconstruction. With the formal constructions in
place, the goal of this section is to restate the PHZD constraints
in a way that can be solved numerically in an optimization
problem. This is done via the PHZD reconstruction method-
ology. With the assumption that the system evolves on the
PHZD surface, a low dimensional representation of the system
can be obtained by defining the partial hybrid zero dynamics
coordinates on the domains v ∈ {oa, fa}:

ξ1,v = δphip(θ) := cvθ,

ξ2,v = ya1,v(θ, θ̇) := δṗhip(θ) := cv θ̇.
(41)

With this choice of zero dynamics coordinates, and due to
the fact that the system is fully controllable, the dynamics of
this surface can be shaped explicitly according to the control
purpose. Therefore, the partial zero dynamics can be designed
to evolve according to the following linear system:20

ξ̇1,v = ξ2,v,

ξ̇2,v = −ε(ξ2,v − vhip).
(42)

In addition, note that the desired position modulating outputs
yd2,v is a function of the parameterized time τ as shown in
(28); thence, it is also a function of ξ1,v . Therefore, utilizing
ξ1,v , ξ2,v and the fact that on the partial zero dynamics
surface we have yH2,v(θ) = yd2,v(ξ1,v, αv) and ∂yH2,v(θ)/∂θθ̇ =
∂yd2,v(ξ1,v, αv)/∂ξ1,vξ2,v , we can explicitly, and in closed
form, reconstruct the full order state of the robot through the
formula:

θv= Ψ(ξ1,v, αv) =

[
cv
Hv

]−1(
ξ1,v

yd2,v(ξ1,v, αv)

)
,

θ̇v= Φ(ξ1,v, ξ2,v, αv) =

[
cv
Hv

]−1( vhip
∂yd2,v(ξ1,v,αv)

∂ξ1,v
ξ2,v

)
.

(43)

Note that, the explicit coordinates in (41) and the linear
ODE in (42) for the partial hybrid zero dynamics are valid for
over-3 and fully-actuated domains only. For the under-actuated
domain, numerical integration of the zero dynamics is required
to obtain the zero dynamics states, which will be then utilized
with (43) for the reconstruction of the full-order joint state (as
outlined in35,37).

3For the over-actuated domain, the PHZD reconstruction only yields
directly controlled states. The rest states will be computed through geometry
constraints in closed form. 21
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B. Main Results.

With the goal to formally establish stable bipedal robotic
walking, we start with introducing the periodic orbits of the
multi-domain hybrid systems as in (3) and the corresponding
generalized Poincaré return maps. With DX = DX

v1∪D
X
v2 · · ·∪

DX
vN , a solution ϕ(t, x0) of (3) is periodic if there exists a

finite T > 0 such that ϕ(t + T, x0) = ϕ(t, x0) for all t ∈
[ t0,∞) and initial condition x0 ∈ DX . A set O ⊂ DX is
a periodic orbit of (3) if O = {ϕ(t, x0) | t ≤ t0} for some
periodic solution ϕ(t, x0). Similarly, we denote the solution
of the zero dynamics ξ̇ = q(0, ξ) by ϕZ(t, ξ0) with ξ0 ∈ Z.
Correspondingly, the periodic orbit of the zero dynamics is
denoted as OZ ⊂ Z.

The Poincaré return map44 is a general mathematical tool
for determining the existence and stability properties of peri-
odic orbits for hybrid dynamical systems with impulses. Anal-
ogous to the hybrid systems with a single-domain as discussed
in,31 we can obtain the generalized Poincaré map for domain
vi from one switching surface to anther as Pvi : SXei−1

→ SXei ,
which is a partial function:

Pvi(xvi−1
) = ϕvi(TIvi (∆ei−1

(xvi−1
),∆ei−1

(xvi−1
)), (44)

where xvi ∈ SXei and TIvi : SXei → R > 0 is the time-to-impact
function for domain vi:

TIvi (x0) := inf{t ≤ 0 | ϕvi(t, x0) ∈ SXei }, (45)

if ∃ t such that ϕvi(t, x0) ∈ SXei .

In particular, for system (2) with the directed circle graph
defined as Γ, the Poincaré return map can be defined with the
composition of generalized Poincaré maps for each domain vi
as discussed in:34

P := PvN ◦ · · · ◦ Pv1 . (46)

With this definition, according to the Proposition in,34 P is
also the Poincaré map for the hybrid system with a single
domain as defined in:31

H̄ = (D̄, S̄, ∆̄, f̄), (47)

with D̄ = DX
v1 , f̄ = fXv1 , S̄ = SXe1 and ∆̄ = ∆eN ◦PvN ◦ · · · ◦

Pv2 .
Similarly, the restricted Poincaré map for the zero dynamics

(as discussed in43) can be defined accordingly as ρvi : SXei−1
∩

Zvi−1 → SXei ∩ Zvi and more explicitly:

ρvi(ξvi−1
) = ϕZvi

(Tρvi (∆Zei−1
(ξvi−1

),∆Zei−1
(ξvi−1

)), (48)

where ξvi ∈ SXei |Zvi
; ∆Zei = ∆ei |Zvi

is the restricted reset
map for the zero dynamics and Tρvi is the restricted time-
to-impact function which is simply given by Tρvi (ξ0) =
TIvi (x0|Z). Particularly, the Poincaré return map for the multi-
domain zero dynamics can be defined as:

ρ := ρvN ◦ · · · ◦ ρv1 , (49)

and therefore ρ is also the Poincaré map for the hybrid zero
dynamics system with a single-domain as defined in:43

H̄Z = (Z̄, S̄Z, ∆̄Z, q̄), (50)

where Z̄ = Zv1 , S̄Z = SXe1∩Zv1 and ∆̄Z = ∆ZeN
◦ρvN ◦· · ·◦

ρv2 , q̄ = qv1 . Therefore, the invariance of the multi-domain
hybrid zero dynamics which is guaranteed by the satisfaction
the mutli-domain PHZD constraints as in (40) is equivalent to
the invariance of the partial hybrid zero dynamics of single
domain as in (50).

It is important to notice that this observation allows the
results developed for single-domain models in43 to be ap-
plied to models with multiple domains as in (2). With the
assumption that the multi-domain hybrid system is C1 in each
domain and has a transversal periodic orbit O ,34 we know that
∆ = ∆eN ◦ PvN ◦ · · · ◦ Pv2 is continuous in a neighborhood
of x∗ = O ∩ SX . Therefore, because of the results in Sect.
4.2.2 of37 along with the assumption that the periodic orbit
O is transversal, exponential stability of the multi-domain
hybrid system can be checked by evaluating eigenvalues of
the Jocobian of P at x∗. More importantly, due to the fact
that a periodic orbit for the zero dynamics, OZ, corresponds
to a periodic orbit for the full-order dynamics, O = ι0(OZ),
through the canonical embedding ι0 : Z → DX given by
ι0(ξ) = (0, ξ), the exponential stability of the full order hybrid
system can be guaranteed by the exponential stability of the
reduced order hybrid system.

Therefore, the above framework of the reconstructed full-
and reduced- order multi-domain hybrid system allow us
to formally expand the results from43 to the multi-domain
situation by stating the following theorem:

Theorem 1. Given the multi-domain hybrid system (3), which
can be reconstructed to a single-domain hybrid system as (47),
let OZ be an exponentially stable transverse periodic orbit
of the corresponding hybrid zero dynamics system (50), then
there exists ε ∈ (0, 1) such that ε = min{ε1, . . . , εN} with
each εi belonging to the set (0, 1) for all the human-inspired
controllers in each domain Dv as defined in (32) and (34),
O = ι0(OZ) is an exponentially stable periodic orbit for the
full order dynamics of the multi-domain hybrid system (2).

Proof: The proof comes directly from the Proposition
4 in34 along with the proof in Theorem 2 in43 with the
reconstructed single-domain hybrid zero dynamics system
(50). From discussion in,43 we know that the human-inspired
controllers as defined in (32) and (34) are Lipschitz continuous
and belong to the rapidly exponential stable-control Lyapunov
function (RES-CLF) based control set Kε as defined in,43

which therefore illustrates the proof of this theorem.

Application to AMBER2. Motivated by the fact that the
multi-domain locomotion of AMBER2 consists one domain
that is fully-actuated, we construct an equivalent single-domain
hybrid system around this fully-actuated intermediate domain
DR,vi as:

H̄R = (D̄R, S̄R, ∆̄R, f̄R), (51)

where D̄R = DR,vi , f̄R = fXR,vi , S̄R = SX
R,e−i

and ∆̄R =

∆R,ei+
◦ PR,v+ ◦ PR,v− . Combining the Theorem 1 and the

results from,31 we propose the following corollary to show
that satisfying the PHZD constraints yields formally provable
stable gait for AMBER2.
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Fig. 9: Geometry of the closed-loop multi-domain system of
AMBER2 evolving on the low dimensional PHZD surfaces
with the human-inspired controllers discussed in this paper.

Corollary 1. Given the hybrid system (5) which can be
reconstructed to a single-domain hybrid system as (51), let
β∗ be the parameters that satisfy the PHZD constraints as in
(40), then there exists ε ∈ (0, 1) such that ε = min{ε1, ε2, ε3}
with each εi belonging to the set (0, 1) for all the human-
inspired controllers in each domain DR,v as defined in (32)
and (34), the multi-domain hybrid system has an exponential
stable periodic orbit, Oε, which depends on ε.

The detailed discussion along with the explicit construction
of the PHZD constraints will be explained in the Appendix A.
Note that, β is the expanded parameter set of α with two
extra augment parameters which will not affect the PHZD
constraints. The details will be illustrated in the Appendix A.

C. Multi-Domain Optimization

We now have necessary framework to present an optimiza-
tion problem with the goal of finding the controller parameter
set α, which delivers both human-like and stable multi-domain
robotic walking. To achieve the goal of human-like locomo-
tion, reference-data-based cost is adopted as the objective
of the optimization problem. Specifically, the objective cost
function is sum of the least squares fit errors between the
robot outputs and the actual outputs of the reference walking
behavior in each domain, which can be stated as follows:

CostREF(α) =
∑
i∈Ov

Ki∑
k=1

(
yHi [k]− ydi (tHi [k], αi)

)2
, (52)

where tHi and Ki are the discrete time and the number of
discrete points for output i ∈ Ov , respectively. Note that for
the purposes of this paper, we will continue to use data from
two reference systems: human walking and SLIP locomotion.

The optimization problem is subject to two key types of
constraints: PHZD constraints that ensure hybrid invariant of
the partial zero dynamics through impacts, and physical con-
straints that guarantee the results are practical realizable. Given
the cost function and the main constraints, the optimization

problem can be stated as the following:

α∗ = argmin CostREF(α) (HIO)
s.t ∆e(Se ∩PZαsor(e)

) ⊂ PZαtar(e)
(PHZD)

Physical Constraints (PHYC)

which we term the human-inspired optimization (HIO) prob-
lem due to the human-inspiration for generating the output
functions that form the basis of the optimization. As discussed
before, while this optimization problem is inspired by human
locomotion (in the selection of outputs), it is not limited to
human-locomotion data—nor even dependent on such data.
Therefore, the end result of this generalized HIO problem is
the control parameter set α that yields formal multi-domain
bipedal locomotion while simultaneously guaranteeing that
the obtained walking is as close to the reference system
as possible. For example, the reference system can be the
human locomotion system if the goal is to achieve human-
like robotic multi-domain walking (AMBER2); and can also
be a SLIP model if we want to achieve SLIP-like multi-
domain locomotion (ATRIAS). Considering the space limits
and structure simplicity, the explicit optimization constructions
of both AMBER2 and ATRIAS are omitted here but can be
found in Appendix A and B, respectively.

Example 13. With the HIO problem constructed as in Ap-
pendix A, the end result is that by utilizing the human
locomotion data as a reference, a stable human-like multi-
domain robotic walking gait is achieved for AMBER2. This
gait was simulated using the human-inspired controllers as
discussed in Sec. IV. The resulting phase portrait can be seen
in Fig. 10, in which the period orbit corresponding to the
walking gait is shown. The obtained robotic outputs are then
compared with the human locomotion outputs in Fig. 11a
and Fig. 11b, showing that the resulting robotic walking is
remarkably human-like given the physical differences between
the robot and human. To numerically validate the stability of
the walking gait, the Poincaré return map44 is utilized to prove
the stability of this gait; in this case, the maximum eigenvalue
is smaller than one (0.3422e−8) indicating a stable walking
gait is achieved.

Example 14. A walking gait for ATRIAS was generated
through the SLIP-inspired optimization (63) discussed in Ap-
pendix B. The gait was then simulated using the human-
inspired controllers introduced in Sec. IV. The resulting pe-
riodic orbits can be seen in Fig. 10. The robustness of the
gait was also investigated; the system was simulated from
a perturbed initial condition to show the output tracking
convergence, as depicted in Fig. 11c. Finally, the stability of
the gait was numerically verified. For ε = 100, the maximum
magnitude of the Poincaré eigenvalues, 0.7135, is less than
one, establishing the gait’s stability.

Due to the SLIP-inspired nature of the optimization, the
full-order model gait behavior was compared to the ideal
SLIP model gait. Although they have different speeds and
step lengths, simulation shows that the planar center of mass
trajectory of the full-order gait exhibits patterns very similar
to that of the SLIP gait, as illustrated in Fig. 11d. Note that the
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Fig. 10: Stable periodic orbits in the joint angles and motor
angles for both AMBER2 (as shown in (a) and (b)) and
ATRIAS (as shown in (c) and (d)). Note that the difference in
shape between (c) and (d) demonstrate the compliance present
in the robotic system being considered.
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Fig. 11: Simulation results: (a) and (b) Comparisons between
the human locomotion outputs and the robot outputs of
AMBER2; (c) Desired versus actual outputs starting from a
perturbed point of ATRIAS; (d) A comparison of the center of
mass trajectory between the ideal SLIP gait and the full-order
robotic model.

x positions of the two trajectories are on different scales. To
show the similarities, the x-axis scaling was adjusted between

the two gaits so that they are in phase. This difference could
be a result of the ideal SLIP model’s massless leg assumption.
In the SLIP model, the leg is assumed massless, enabling
instantaneous changes in position during swing. Therefore,
SLIP gaits with very short single support phases may not
be physically possible with the full-order model. Moreover,
to achieve sustainable walking on a real robot, a proper foot
clearance constraint is needed with a maximum non-stance
foot height. To satisfy this constraint, the optimization will
tend to find gaits with a comparatively high center of mass
position. Despite these differences, the full-order system’s
walking gait is remarkably SLIP-like.

VI. IMPLEMENTATION RESULTS

Having provided the formal methodology for generating
multi-contact walking gaits, we now discuss the methodology
for translating these results to physical robots. Through a
procedure utilizing partial hybrid zero dynamics, we present a
method for generating parameterized desired joint trajectories
that allow for the experimental implementation on both AM-
BER2 and ATRIAS with the end result being multi-contact
locomotion.

A. Implementation on AMBER2

As the parameters α are designed for the outputs, it is
necessary to use the PHZD reconstruction method discussed
in Sec. V-A to resolve the desired joint trajectories (θd, θ̇d) for
practical realization. Tracking these joint trajectories would be
equivalent to tracking the designed outputs. In order to obtain
the PHZD reconstruction, both ξ1,v and ξ2,v can be computed
based on the current state for each domain. However, as the
hip velocity term ξ2,v is associated with multiple encoders,
the actual value will accumulate the signal errors of all
its contributing encoders. The end result will be inaccurate
velocity data. To bypass this shortcoming, we exploit the
advantages of the hybrid zero dynamics by solving the zero
dynamics ODE shown in (42) explicitly as follows:

ξ1(t) = v∗hipt+
(1− exp(−εt))

ε
(v0hip − v∗hip) + δp0hip,

ξ2(t) = v∗hip + exp(−εt)(v0hip − v∗hip),
(53)

where δp0hip and v0hip are the initial hip position and hip
velocity at the beginning of a step; v∗hip is the desired hip
velocity from optimization.

To establish state based tracking, the time t is replaced
with the parametrized time τ(θ), which is computed based
on the current state that are read from the encoders. Note that,
even though the output of hip velocity is not tracked during
the under-actuated domain, it is still reasonable to achieve
an approximation with this method considering the optimized
trajectory. More detailed explanation can be found in.21

PD controllers are then used to track the joint angle and
velocity profiles obtained from the PHZD reconstruction:

τPD = −Kp(θ
a − θd)−Kd(θ̇

a − θ̇d), (54)

where Kp and Kd are proportional and derivative gain matri-
ces, respectively. The proposed PD controller with the PHZD
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(a) Human walking tiles for one step of high-stepping locomotion data.

(b) Simulated walking tiles for one step of AMBER2 with PD control.

(c) Experimental walking tiles for one step of AMBER2 with PD control.

Fig. 12: Comparison of walking tiles between the actual human walking, simulated walking and experimental walking.

reconstruction trajectories was verified in simulation before
implementation on the physical robot. The simulation results
generated using the human-inspired controller are presented
in Fig. 13b. Comparing the human-inspired controller results
as shown in Fig. 13a to the trajectories, we can observe that
the PD controller with the reconstruction strategy has achieved
similar results.
Experiment Setup. To realize real world walking on the
physical robot AMBER2, LabVIEW 2011 is used for both
the code development and robotic control. The controller for
AMBER2 has two levels: a high level controller realized
on a Real-Time (RT) module, and a low level controller
implemented on a Field-Programmable Gate Array (FPGA),
the details of which are explained in.21

By applying a PD controller to track the reconstructed
joint trajectories, AMBER2 has achieved sustainable human-
like multi-domain walking. From the attached video as in,21

the multi-domain walking of AMBER2 displays all the key
features of human-like locomotion: toe strike, heel lift and
heel strike. Particularly, AMBER2 has continuously walked for
45minutes with an approximated 1100m traveling distance.
The test ended due to the mechanical failure of a driving chain.
The commanded joint torques for each motor are shown in
Fig. 14. The comparison between the experimental gait tiles
and the simulated gait tiles is shown in Fig. 12. In particular,
the actual reference high-stepping human locomotion data,

which we used to obtain the optimized trajectory, is also shown
at the top of Fig. 12, revealing that the realized experimental
walking is human-like. The actual joint angles obtained during
an experiment are shown in Fig. 13c for comparison with
the simulated results. These comparisons indicate that the
robot replicates the formal result very well, i.e., there are
good agreements between practice and theory. Robustness
tests are performed to demonstrate that AMBER2 can sustain
unintended pushes and overcome big obstacles.

Also of note is that the system is developed with minimum
sensing requirements by only using foot contact switches
and incremental encoders. The inherent advantages imbibed
in the ECWF—simpler form and better behavior outside
of the nominal operation window, see18 for more details—
and the robot’s design methodology facilitated the ease of
applying such simple control laws to realize walking, which
also resulted in low torque consumption throughout the step
cycle. The actual joint angles of multiple steps along with the
reconstructed desired joint trajectories are shown in Fig. 15.

B. Implementation on ATRIAS
For practical realization, we want to find the desired robot

motor angles and velocities at each iteration through inverse
projection from the HZD surface. Recall that the outputs of
the human-inspired controller are the linear mapping of the
motor angles. Therefore, given the HZD surface determined
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(c) Joint angles with PD control in experiment

Fig. 13: Comparison of actual joint angles between simulation
and experimental results logged during AMBER2 walking.

by the parameter set α∗ obtained from optimization, we can
reconstruct the desired motor angles and velocities from the
system outputs on the HZD surface in the same manner
as discussed in (43). Because tracking the joint angles and
velocities of the robot is equivalent to tracking the outputs,
the restriction of the dynamics to the partial zero dynamics
surface is maintained.

PD controllers are then used to track the desired motor
angles and velocities obtained from the HZD reconstruction:

τPD = −Kp(θ
a
m − θdm)−Kd(θ̇

a
m − θ̇dm), (55)

where Kp and Kd are proportional and derivative constant
matrices, respectively. Here, the elements of the Kp and Kd

matrices depend on their corresponding motors.
Experiment Setup. ATRIAS is supported by a boom that
constrains it to the sagittal plane so as to emulate a 2D planar
robot. In addition, boom encoders at each degree of freedom
provide feedback on the robot’s torso position and rotation
relative to the world frame. During experiments the boom also
functions as a safety mechanism to catch the robot in the event
of a fall; it does not provide any support in the sagittal plane
at any other time.

Each experiment was conducted in a similar manner. The
control system was initially enabled while ATRIAS was sus-
pended in the air, allowing the software to drive the robot
to an initial pose. ATRIAS was then lowered to the ground
and manually given an initial impulse to initiate the walking
motion. Fig. 16 and Fig. 17 show the tracking of the motor
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Fig. 14: Actual vs. desired joint angles logged during AM-
BER2 walking with the unified control law, with rms the root
mean square of tracking error.

0 0.5 1 1.5 2
−10

−5

0

5

10

15

t[s]

T
o
r
q
u
e
[N

·
m
]

(a) Sankle torque

0 0.5 1 1.5 2

−5

0

5

10

t[s]

T
o
r
q
u
e
[N

·
m
]

(b) Sknee torque

0 0.5 1 1.5 2

−5

0

5

t[s]

T
o
r
q
u
e
[N

·
m
]

(c) Ship torque

0 0.5 1 1.5 2

−4

−2

0

2

4

6

t[s]

T
o
r
q
u
e
[N

·
m
]

(d) NShip torque

0 0.5 1 1.5 2

−10

−5

0

5

t[s]

T
o
r
q
u
e
[N

·
m
]

(e) NSknee torque

0 0.5 1 1.5 2
−5

0

5

10

t[s]

T
o
r
q
u
e
[N

·
m
]

(f) NSankle torque

Fig. 15: Torque inputs of each motor
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Fig. 16: Comparison of the actual θEa versus desired θEd
motor angle trajectories of left leg (θm1L, θm2L) and right
leg (θm1R, θm2R) from experiment.
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Fig. 17: Comparison of actual θ̇Ea vs. desired θ̇Ed motor
velocities trajectories of left leg (θ̇m1L, θ̇m2L) and right leg
(θ̇m1R, θ̇m2R) from experiment.

angles and velocities of the left and right legs during four
walking steps with the left leg as the stance leg for the
first step. The corresponding input torques for each motor
are shown in Fig. 18. Note that the subscripts ‘L’ and ‘R’
in the subtitles represent the left and right leg, respectively.
The tracking errors are exceptionally small with motor torque
inputs remaining within the robot’s capabilities. The end result
is a dynamically stable walking gait that visually appears
“SLIP-like”. The snapshots in Fig. 19 illustrate the extraordi-
nary similarities between the simulated and experimental gaits.
The video of the experiment shows sustainable walking with
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Fig. 18: Torque inputs of each motor.

ATRIAS and is available in.26

VII. CONCLUSIONS
The main contribution of this paper is to present a gen-

eral formal means by which multi-domain bipedal robotic
locomotion was achieved first in simulation and finally on
two physical robots, AMBER2 and ATRIAS. With the goal
of formally establishing stable bipedal robotic walking, a
theorem utilizing the framework of hybrid zero dynamics and
Poincaré return map techniques is proposed for the first time,
according to which the exponential stability of the full order
hybrid system can be guaranteed by the exponential stability
of the reduced order hybrid system. This theorem is then
extended to the case of AMBER2 showing that the exponential
stability of the reduced order hybrid system can be achieved
within the framework of the multi-domain hybrid system of
AMBER2. The end result of this framework implementation
is the formally stable multi-contact walking.

To verify the theorem analysis onto the physical robot
platforms, the main goals of this work are achieved with the
following steps. With the human locomotion as the reference,
a novel multi-domain optimization was developed first to
generate control parameters that yield stable and human-like
multi-domain locomotion. In order to realize this result on a
physical robot, the PHZD trajectory reconstruction methodol-
ogy was then utilized to generate joint trajectories for robust
tracking while at the same time restricting the dynamics to the
invariant hybrid zero dynamic surface. With the experimental
implementation inheriting the essential formal elements of the
controllers and optimization, which are utilized to generate
these gaits, stable robotic walking that displays qualitatively
human-like walking with distinct multi-contact behaviors in a
dynamic fashion is realized. Robustness tests showed that the
walking was robust to various disturbances and can walk over
obstacles for a wide range of heights.

While this complete methodology was inspired from human
locomotion, it was not limited to human-locomotion data—nor
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even depend on human data. With the SLIP model as the refer-
ence, this methodology was successfully utilized to generate
a multi-domain SLIP-like walking gait and implemented on
the robot ATRIAS with the results of achieving stable multi-
domain SLIP-like locomotion.

Note that it is the PHZD based optimization problem and
trajectory reconstruction that bridges the gap between the
theory and experimentation. The work in this paper is only
focused on planar multi-domain locomotion with less than four
domains. However, it is also applicable to add more domains
or expand to 3D locomotion (more sets of parameters will be
required) with the PHZD surfaces being properly constructed.
PHZD 3D multi-domain locomotion will be the focus of future
work on this topic.

APPENDIX A:
OPTIMIZATION CONSTRUCTION OF AMBER2

This section will discuss the detailed construction of the
multi-domain optimization for AMBER2 by considering the
PHZD constraints for each transition.

Intermediate to Pre-Impact Constraints. In order to re-
frame the PHZD constraints in a way such that the opti-
mization problem can be numerically approached, we use the
PHZD reconstruction strategy to construct a point (υ, υ̇) ∈
PZvi∩SXei− , and due to the full control authority, we know that
ξ2,vi = vhip. Next, we add an additional parameter by defining
ξ1,vi = αv

i

phip
to obtain the hip position ξ1,vi . Therefore, we

expand our set of parameters by defining: βvi = {αviphip
, αvi}.

By doing so, we can explicitly solve the point (υ(βvi), υ̇(βvi))
as υ(βvi) = Ψ(αv

i

phip
, αvi) and υ̇(βvi) = Φ(αv

i

phip
, vhip, αvi)).

With this construction, we can specifically impose the
constraint of domain vi, which indicates that the reaction force
on the heel has to cross zero,

hvi(υ(βvi), υ̇(βvi) = 0. (RC1)

Note that, the intermediate domain vi will switch to the pre-
impact domain v− smoothly without requiring any further
constraints except the guard condition. This is the benefit of
using only one ECWF through all three domains. Particularly,
with the addition parameter αv

i

phip
, the time of the switch

moment SX
ei−

can also be optimized.

Pre-Impact to Post-Impact Constraints. The constructed
point (υ(βvi), υ̇(βvi)) ∈ PZvi ∩ SXei− above is also the initial
point of domain v− due to the fact ∆ei−

= I , i.e., the reset map

of this transition is identity. With ϕv
−

denoting the solution
of the vector (fv− , gv−), we can define the following point:

(ϕ(βvi), ϕ̇(βvi)) = ϕv
−

Tv− (υ(βvi ),υ̇(βvi ))
(υ(βvi), υ̇(βvi)). (56)

Clearly, (ϕ(βvi), ϕ̇(βvi)) ∈ SXe−+
. In order to satisfy the PHZD

constraints, the post impact state of (ϕ(βvi), ϕ̇(βvi)) has to
be on the surface of PZv+ , which implies the following

constraints:

y2,v+(∆θ,e−+
ϕ(βvi)) = 0, (RC2)

dy2,v+(∆θ,e−+
ϕ(βvi))∆θ̇,e−+

ϕ̇(βvi) = 0, (RC3)

∂hv−(ϕ(βvi))

∂ϕ(βvi)
ϕ̇(βvi) < 0, (RC4)

where constraint (RC4) implies that the impact is transverse
to the guard.35

Post-impact to Intermediate Constraints. Analogous to the
PHZD reconstruction at the end of domain vi, we seek to
construct a point (υ, υ̇) ∈ PZv+ ∩ SXei+ with an additional

parameter αv
+

phip
denoting the hip position at the end of

domain v+. Note that, with the assumption that the controller
gain ε is large enough to drive the actual hip velocity to
the desired value with sufficient speed (before the end of
domain v+), we have ξ2,v+ = vhip. Therefore, by defining
the extended parameter set to be βv+ = {αv+phip

, αv+}, we
can solve for this point as υ(βv+) = Ψ(αv

+

phip
, αv+) and

υ̇(βv+) = Φ(αv
+

phip
, vhip, αv+)).

Finally, we can explicitly compute the point at the beginning
of the domain vi using the reset map ∆ei+

with ∆θ,ei+
= I and

∆θ̇,ei+
as discussed in (18). Thence, the specific constraints for

the minor impact transition can be stated as follows:

y{hip,tor},vi(υ(βvi)) = 0, (RC5)
|dy2,vi(υ(βv+))∆θ̇,ei+

υ̇(βv+)| < σ, (RC6)

∂hv+(υ(βv+))

∂υ(βv+)
υ̇(βv+) < 0, (RC7)

where (RC7) implies that the impact is transverse to the
guard. The constant σ is a small positive user-defined value,
which is chosen to be 0.1 in our application. Note that, since
only one ECWF has been utilized to characterize the outputs
of a whole gait cycle, the PHZD surface can not be fully
guaranteed throughout the whole step, which contains three
domains and two impacts. Therefore, the PHZD constraints
for the switch between the post-impact domain v+ and the
intermediate domain vi have to be relaxed by only constraining
the positions of the outputs, i.e., the states are allowed to be off
the PHZD surface for a small moment right after the minor
impact. Therefore, the constraints (RC6) make sure that the
velocity changes due to the minor impact of the toe strike are
smaller than a specific value. As a result, the system will not
be thrown off the PHZD surface too much and will converge
back to the surface sufficiently quick. In particular, since the
shared position modulating outputs between domain v+ and vi

will be continuous by construction due to the identity position
reset map, constraints (RC5) enforce that the outputs yhip,v+
and ytor,v+ which are not tracked during the domain v+ should
be on the surface of PZvi .

Physical Constraints. Despite the PHZD constraints which
insure a stable periodic orbit for the considered hybrid sys-
tem,35 we also consider several physical constraints such that
the results of the optimization are in a form that can be
implemented on the physical robots directly. In particular, the
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Fig. 19: Walking gait snapshot comparison of the simulation and experimental results with ATRIAS over one step.

following two types of physical constraint are considered:

Torque Constraints. Torques acting on the joints are limited
by the capacity of the motors and the motion control modules.
Therefore, the optimized gait has to respect the hardware
torque bounds, which is stated as:

max
0≤τ(θ(β))

||u(θ(β), θ̇(β), ε)|| ≤MAXtorque, (RC8)

where β = {αv+phip
, αv

i

phip
, α} is the final expanded parameter

set.

Foot Scuffing Conditions. The swing height clearance of toe
and heel, and stride length during the swing phase must
be sufficient to avoid scuffing amidst sensor noise, tracking
error, uneven ground and even imperfections in the mechanical
design. Therefore, foot scuffing conditions must be imposed
to insure sustainable walking. Explicitly, we define:

max
0≤τ(θ(β))

(hnst(θ(β))− hquad(θ(β), hmax)) > 0,

max
0≤τ(θ(β))

(hnsh(θ(β))− hquad(θ(β), hmax)) > 0,

max
0≤τ(θ(β))

lnsf (θ(β))−MINsteplength > 0, (RC9-11)

where hquad is a quadratic polynomial above which the
height of non-stance toe (hnst) and heel (hnsh) must remain
during the course of a step. The stride length lnsf is con-
strained to be greater than a minimum specified stride length,
MINsteplength.

Main Results. Utilizing all of the formal constructions above,
together with the constraints needed for practical implemen-
tation, the final multi-domain optimization problem for AM-

BER2 can be stated as:

β∗ = argmin
β∈R45

CostHD(β) (HIO)

s.t PHZD Constraints (RC1-7)
Physical Constraints (RC8-11)

where the human-data-based cost is defined as:

CostHD(β) =
∑
i∈Ov

Ki∑
k=1

(
yHi [k]− ydi (tHi [k], βi)

)2
, (57)

with tHi and Ki being the discrete time and the number of
discrete points for output i ∈ Ov , respectively. By solving
this optimization problem , we can obtain the optimized β∗

parameters that best fit human-walking data while enforcing
the desired constraints to achieve stable multi-domain robotic
walking as stated in Corollary 1. Note that, Corollary 1
follows from the following observations coupled with the
PHZD constructions in this section.

According to the Theorem 1 in,31 constraints RC2-4 guar-
antee that the system is invariant in the partial hybrid zero
dynamics through the major impact, i.e., the heel strike. An-
other important fact of satisfying constraints RC2-4 is that we
are able to make sure that under-actuated domain can complete
one step by using the numerical integration through the course
of under-actuated domain. More importantly, benefited from
the fact that only one CWF is used for the whole step
cycle, the system is thus invariant through the rest domain
transitions. In particular, for AMBER2 walking with an extra
small toe impact, constraints RC5-7 indicate that this impact
is minor and transversal, insuring the system converges back
to the partial hybrid system sufficiently quick. Therefore, with
the folded one domain construction of AMBER2, we have
∆(SX∩PZβ) ⊂ PZβ with PZβ being the partial hybrid zero
dynamics of domain DX

vi . According to the Theorem 2 in,31
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the hybrid system (5) has an exponentially stable periodic.

APPENDIX B:
OPTIMIZATION CONSTRUCTION OF ATRIAS

SLIP Inspired Optimization. This section utilizes the fact
that the zero dynamic surfaces in (35) are invariant under the
flow of closed-loop continuous dynamics while not necessarily
invariant for the discrete dynamics. In particular, the invariance
of the zero dynamics will be disturbed at the discrete impacts
that occur as a result of contact points changing. For the
hybrid system of ATRIAS, the only impact occurs when the
robot transitions from the single support domain into the
double support domain. The goal of this section is to find
a parameter set α∗, which guarantees hybrid invariance of
the hybrid system of ATRIAS while tracking the center of
mass (CoM) trajectory of SLIP model as close as possible. In
particular, we construct the following constrained optimization
problem, called SLIP Inspired Optimization:

α∗ = argmin
α∈R4×5

CostSLIP(α), (58)

s.t ∆e+−
(SX
e+−
∩PZαv− ) ⊂ PZαv+ (HZD)

with the SLIP-model-based cost function defined as:

CostSLIP(α) = (59)
K∑
k=1

∑
i∈{x,z}

(
pScom,i[k]− pcom,i

(
yecwf (tS [k], α)

))2
,

where discrete times, tS [k], and discrete values of the CoM
position for the SLIP gait, pScom,i[k], for i ∈ {x, z}, and
pcom

(
yH(tS [k], α)

)
is the approximate CoM position of the

robot computed from the outputs characterized by the ECWF.
The end result is the least square fit of the CoM trajectory
of the robot to that of SLIP model. In other words, we seek
to “shape” the dynamics of the robot as close to the SLIP
model dynamics as possible. Importantly, as illustrated before,
because of ATRAIS is under-actuated through all domains, the
partial zero dynamics PZαv

is actually the full zero dynamics
Zαv

for ATRIAS by definition. Therefore, we will use PZαv

for this case to keep notation simple and consistent.

Hybrid Zero Dynamics. As discussed in previous section,
a hybrid system has hybrid zero dynamics (HZD) if the zero
dynamics are invariant through the impact. For a fully-actuated
or over-actuated system, the pre-impact states can be explicitly
solved for in terms of the parameter α using the inverse
kinematics strategy directly.35 However, because the system
being considered has series elastic actuators, it is unable to
be solved explicitly due to the high dimensions of the zero
dynamics surface of the system. This difficulty stems from the
fact that the pre-impact states of the zero dynamics coordinates
need to be solved by integrating the dynamics defined in (38).

We assume that a set of points (θ−z , θ̇
−
z ) are the local

coordinates of the zero dynamics on the guard. Due to the
fact that the guard function hv−(θ) only depends on the rigid
body configurations, which is the same as (θz) in this case,

the following constraints need to be satisfied:

hv−(θ−z ) = 0, (SC1)

dhv−(θ−z )θ̇−z < 0, (SC2)

where (SC2) guarantees that the guard is transversal. Note
that, because of the special case of ATRIAS, the normal form
of zero dynamics is exactly the equations of motion defined
with the original state space. Therefore, we could choose the
uncontrolled zero coordinates as η = θz ∈ Z explicitly.

Now we expand our parameter set by defining, β :=
{α, θ−z , θ̇−z }. The advantage of this definition is that we can
solve the pre-impact states explicitly in the terms of β, and
simplify the constraints to the same form as in.35 A point
(ϑ(β), ϑ̇(β)) ∈ SX

e+−
∩PZαv− depending on these parameters

can be obtained by solving the equations:

ϑ(β) := θ s.t. y(∆θ,e+−
θ) = 04, (60)

ϑ̇(β) = Y −1(ϑ(β))

[
θ̇−z
04

]
, (61)

where,

Y (ϑ(β)) =

[
Hz

dy(ϑ(β))

]
,

with Hz being defined as

θz = [I7×7 07×4] θ := Hzθ. (62)

The equation (60) is easy to solve using the fact that θ+ =
R∆θ,e+−

θ and τ(R∆θ,e+−
θ) = 0 which imply: y(θ+) =

ya(θ+) − yd(0). With the proper choice of the outputs, the
matrix Y (ϑ(β)) is invertible. Thus the (HZD) of the system
can be stated as,

y(ϑ(β)) = 0, (SC3)

dy
(
R∆θ,e+−

ϑ(β)
)
R∆θ̇,e+−

(ϑ(β))ϑ̇(β) = 0, (SC4)

which guarantees the hybrid invariance of the system through
the impact.35

Physical Constraints. To achieve a physically permissible
bipedal walking gait, several physical constraints are imposed
on the optimization. The computations of the physical con-
straints are performed by integrating the zero dynamics of
(38) over both double support and single support domains
with the initial condition ∆e+−

(ϑ(β), ϑ̇(β)). Those constraints
are addressed explicitly as follows:

Ground Reaction Forces: For the double support domain, the
normal ground reaction forces on non-stance foot should be
positive to prevent the reaction force actually “pulling” the
robot against the ground, i.e.,

F zns(θz, θ̇z, α) > 0, (θz, θ̇z) ∈ PZαv+ |Z. (SC5)

For the single support domain, the normal ground reaction
forces on stance foot should be positive, i.e., the stance foot
should be in contact with the ground. Therefore, we require:

F zs (θz, θ̇z, α) > 0, (θz, θ̇z) ∈ PZαv− |Z. (SC6)
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Friction: To prevent the stance foot from sliding, the following
constraint is imposed:

F xs (θz, θ̇z, α) < µF zs (θz, θ̇z, α), (SC7)

where µ is the coefficient of static friction for the contact
between stance foot and the ground.

Foot Clearance: From the definition of the Dv− , the height of
the non-stance foot needs to be above the ground during the
single support domain. Using the fact that the height of the
non-stance foot is the function of joint angles, we obtain:

hns(θz) > 0, (θz, θ̇z) ∈ PZαv− |Z. (SC8)

Touch Down Angle: To achieve stable walking with the ideal
SLIP model, the touch down angle ϕTD(ϑ(β)) (the angle of
attack) needs to be a certain value. Therefore, to match the
SLIP model dynamics as closely as possible, we impose a
constraint on the touch down angle ϕTD such that it is equal
to the desired value of the stable SLIP walking gait:

ϕTD(ϑ(β)) = αTD. (SC9)

We now have the necessary framework in which to restate
the multi-domain SLIP Inspired Optimization problem:

β∗ = argmin
β∈R36

CostSLIP(β) (63)

s.t PHZD Constraints (SC1-4)
Physical Constraints (SC5-9)

The end result is a stable multi-domain walking gait with
β = (α, θ−z , θ̇

−
z ) consisting of the parameters of the human

walking function α, and the pre-impact state (θ−z , θ̇
−
z ) of

the zero dynamics. The stability of the gait is validated
numerically through the use of the Poincaré map for the zero
dynamics after the optimization which can be referred to.26
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